import os import json import re import gradio as gr import pandas as pd import requests import random import feedparser import urllib.parse from tempfile import NamedTemporaryFile from typing import List from bs4 import BeautifulSoup from langchain_core.prompts import ChatPromptTemplate from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain_core.output_parsers import StrOutputParser from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.llms import HuggingFaceHub from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_core.documents import Document from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") # Memory database to store question-answer pairs memory_database = {} conversation_history = [] news_database = [] def load_and_split_document_basic(file): """Loads and splits the document into pages.""" loader = PyPDFLoader(file.name) data = loader.load_and_split() return data def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]: """Loads and splits the document into chunks.""" loader = PyPDFLoader(file.name) pages = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len, ) chunks = text_splitter.split_documents(pages) return chunks def get_embeddings(): return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") def create_or_update_database(data, embeddings): if os.path.exists("faiss_database"): db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) db.add_documents(data) else: db = FAISS.from_documents(data, embeddings) db.save_local("faiss_database") def clear_cache(): if os.path.exists("faiss_database"): os.remove("faiss_database") return "Cache cleared successfully." else: return "No cache to clear." def get_similarity(text1, text2): vectorizer = TfidfVectorizer().fit_transform([text1, text2]) return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0] prompt = """ Answer the question based on the following information: Conversation History: {history} Context from documents: {context} Current Question: {question} If the question is referring to the conversation history, use that information to answer. If the question is not related to the conversation history, use the context from documents to answer. If you don't have enough information to answer, say so. Provide a concise and direct answer to the question: """ def get_model(temperature, top_p, repetition_penalty): return HuggingFaceHub( repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={ "temperature": temperature, "top_p": top_p, "repetition_penalty": repetition_penalty, "max_length": 1000 }, huggingfacehub_api_token=huggingface_token ) def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): full_response = "" for i in range(max_chunks): chunk = model(prompt + full_response, max_new_tokens=max_tokens) chunk = chunk.strip() if chunk.endswith((".", "!", "?")): full_response += chunk break full_response += chunk return full_response.strip() def manage_conversation_history(question, answer, history, max_history=5): history.append({"question": question, "answer": answer}) if len(history) > max_history: history.pop(0) return history def is_related_to_history(question, history, threshold=0.3): if not history: return False history_text = " ".join([f"{h['question']} {h['answer']}" for h in history]) similarity = get_similarity(question, history_text) return similarity > threshold def extract_text_from_webpage(html): soup = BeautifulSoup(html, 'html.parser') for script in soup(["script", "style"]): script.extract() # Remove scripts and styles text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = '\n'.join(chunk for chunk in chunks if chunk) return text _useragent_list = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", ] def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): escaped_term = urllib.parse.quote_plus(term) start = 0 all_results = [] max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit print(f"Starting Google search for term: '{term}'") with requests.Session() as session: while start < num_results: try: user_agent = random.choice(_useragent_list) headers = { 'User-Agent': user_agent } resp = session.get( url="https://www.google.com/search", headers=headers, params={ "q": term, "num": num_results - start, "hl": lang, "start": start, "safe": safe, }, timeout=timeout, verify=ssl_verify, ) resp.raise_for_status() print(f"Successfully retrieved search results page (start={start})") except requests.exceptions.RequestException as e: print(f"Error retrieving search results: {e}") break soup = BeautifulSoup(resp.text, "html.parser") result_block = soup.find_all("div", attrs={"class": "g"}) if not result_block: print("No results found on this page") break print(f"Found {len(result_block)} results on this page") for result in result_block: link = result.find("a", href=True) if link: link = link["href"] print(f"Processing link: {link}") try: webpage = session.get(link, headers=headers, timeout=timeout) webpage.raise_for_status() visible_text = extract_text_from_webpage(webpage.text) if len(visible_text) > max_chars_per_page: visible_text = visible_text[:max_chars_per_page] + "..." all_results.append({"link": link, "text": visible_text}) print(f"Successfully extracted text from {link}") except requests.exceptions.RequestException as e: print(f"Error retrieving webpage content: {e}") all_results.append({"link": link, "text": None}) else: print("No link found for this result") all_results.append({"link": None, "text": None}) start += len(result_block) print(f"Search completed. Total results: {len(all_results)}") print("Search results:") for i, result in enumerate(all_results, 1): print(f"Result {i}:") print(f" Link: {result['link']}") if result['text']: print(f" Text: {result['text'][:100]}...") # Print first 100 characters else: print(" Text: None") print("End of search results") if not all_results: print("No search results found. Returning a default message.") return [{"link": None, "text": "No information found in the web search results."}] return all_results def fetch_google_news_rss(query, num_results=10): base_url = "https://news.google.com/rss/search" params = { "q": query, "hl": "en-US", "gl": "US", "ceid": "US:en" } url = f"{base_url}?{urllib.parse.urlencode(params)}" feed = feedparser.parse(url) articles = [] for entry in feed.entries[:num_results]: article = { "published_date": entry.published, "title": entry.title, "url": entry.link, "content": entry.summary } articles.append(article) return articles def summarize_news_content(content, model): prompt_template = """ Summarize the following news article in a concise manner: {content} Summary: """ prompt = ChatPromptTemplate.from_template(prompt_template) formatted_prompt = prompt.format(content=content) summary = generate_chunked_response(model, formatted_prompt, max_tokens=200) return summary def process_google_news_rss(query, temperature, top_p, repetition_penalty): model = get_model(temperature, top_p, repetition_penalty) embed = get_embeddings() articles = fetch_google_news_rss(query) processed_articles = [] for article in articles: summary = summarize_news_content(article["content"], model) processed_article = { "published_date": article["published_date"], "title": article["title"], "url": article["url"], "content": article["content"], "summary": summary } processed_articles.append(processed_article) # Add processed articles to the database docs = [Document(page_content=article["summary"], metadata={ "source": article["url"], "title": article["title"], "published_date": article["published_date"] }) for article in processed_articles] if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) database.add_documents(docs) else: database = FAISS.from_documents(docs, embed) database.save_local("faiss_database") # Update news_database for excel export global news_database news_database.extend(processed_articles) return f"Processed and added {len(processed_articles)} news articles to the database." def export_news_to_excel(): global news_database df = pd.DataFrame(news_database) with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: excel_path = tmp.name df.to_excel(excel_path, index=False) return excel_path def ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss): global conversation_history if not question: return "Please enter a question." model = get_model(temperature, top_p, repetition_penalty) embed = get_embeddings() # Check if the FAISS database exists if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) else: database = None if web_search: search_results = google_search(question) web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]] if database is None: database = FAISS.from_documents(web_docs, embed) else: database.add_documents(web_docs) database.save_local("faiss_database") context_str = "\n".join([doc.page_content for doc in web_docs]) prompt_template = """ Answer the question based on the following web search results: Web Search Results: {context} Current Question: {question} If the web search results don't contain relevant information, state that the information is not available in the search results. Provide a concise and direct answer to the question without mentioning the web search or these instructions: """ prompt_val = ChatPromptTemplate.from_template(prompt_template) formatted_prompt = prompt_val.format(context=context_str, question=question) elif google_news_rss: if database is None: return "No news articles available. Please fetch news articles first." retriever = database.as_retriever() relevant_docs = retriever.get_relevant_documents(question) context_str = "\n".join([f"Title: {doc.metadata.get('title', 'N/A')}\nURL: {doc.metadata.get('source', 'N/A')}\nSummary: {doc.page_content}" for doc in relevant_docs]) prompt_template = """ Answer the question based on the following news summaries: News Summaries: {context} Current Question: {question} If the news summaries don't contain relevant information, state that the information is not available in the news articles. Provide a concise and direct answer to the question without mentioning the news summaries or these instructions: """ prompt_val = ChatPromptTemplate.from_template(prompt_template) formatted_prompt = prompt_val.format(context=context_str, question=question) else: if database is None: return "No documents available. Please upload documents, enable web search, or fetch news articles to answer questions." history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history]) if is_related_to_history(question, conversation_history): context_str = "No additional context needed. Please refer to the conversation history." else: retriever = database.as_retriever() relevant_docs = retriever.get_relevant_documents(question) context_str = "\n".join([doc.page_content for doc in relevant_docs]) prompt_val = ChatPromptTemplate.from_template(prompt) formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question) full_response = generate_chunked_response(model, formatted_prompt) # Extract only the part after the last occurrence of a prompt-like sentence answer_patterns = [ r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", r"Provide a concise and direct answer to the question without mentioning the news summaries or these instructions:", r"Provide a concise and direct answer to the question:", r"Answer:" ] for pattern in answer_patterns: match = re.split(pattern, full_response, flags=re.IGNORECASE) if len(match) > 1: answer = match[-1].strip() break else: # If no pattern is found, return the full response answer = full_response.strip() if not web_search and not google_news_rss: memory_database[question] = answer conversation_history = manage_conversation_history(question, answer, conversation_history) return answer def update_vectors(files, use_recursive_splitter): if not files: return "Please upload at least one PDF file." embed = get_embeddings() total_chunks = 0 all_data = [] for file in files: if use_recursive_splitter: data = load_and_split_document_recursive(file) else: data = load_and_split_document_basic(file) all_data.extend(data) total_chunks += len(data) if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) database.add_documents(all_data) else: database = FAISS.from_documents(all_data, embed) database.save_local("faiss_database") return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." def extract_db_to_excel(): embed = get_embeddings() database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) documents = database.docstore._dict.values() data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] df = pd.DataFrame(data) with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: excel_path = tmp.name df.to_excel(excel_path, index=False) return excel_path def export_memory_db_to_excel(): data = [{"question": question, "answer": answer} for question, answer in memory_database.items()] df_memory = pd.DataFrame(data) data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history] df_history = pd.DataFrame(data_history) with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: excel_path = tmp.name with pd.ExcelWriter(excel_path, engine='openpyxl') as writer: df_memory.to_excel(writer, sheet_name='Memory Database', index=False) df_history.to_excel(writer, sheet_name='Conversation History', index=False) return excel_path # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Chat with your PDF documents and News") with gr.Row(): file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) update_button = gr.Button("Update Vector Store") use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False) update_output = gr.Textbox(label="Update Status") update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output) with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot(label="Conversation") question_input = gr.Textbox(label="Ask a question about your documents or news") submit_button = gr.Button("Submit") with gr.Column(scale=1): temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False) google_news_rss_checkbox = gr.Checkbox(label="Google News RSS", value=False) with gr.Row(): news_query_input = gr.Textbox(label="Enter news query") fetch_news_button = gr.Button("Fetch News") news_fetch_output = gr.Textbox(label="News Fetch Status") def chat(question, history, temperature, top_p, repetition_penalty, web_search, google_news_rss): answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss) history.append((question, answer)) return "", history submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox, google_news_rss_checkbox], outputs=[question_input, chatbot]) fetch_news_button.click(process_google_news_rss, inputs=[news_query_input, temperature_slider, top_p_slider, repetition_penalty_slider], outputs=news_fetch_output) extract_button = gr.Button("Extract Database to Excel") excel_output = gr.File(label="Download Excel File") extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output) export_memory_button = gr.Button("Export Memory Database to Excel") memory_excel_output = gr.File(label="Download Memory Excel File") export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output) export_news_button = gr.Button("Download News Excel File") news_excel_output = gr.File(label="Download News Excel File") export_news_button.click(export_news_to_excel, inputs=[], outputs=news_excel_output) clear_button = gr.Button("Clear Cache") clear_output = gr.Textbox(label="Cache Status") clear_button.click(clear_cache, inputs=[], outputs=clear_output) if __name__ == "__main__": demo.launch()