import fitz # PyMuPDF import gradio as gr import requests from bs4 import BeautifulSoup import urllib.parse import random import os from dotenv import load_dotenv import shutil import tempfile import re import unicodedata from nltk.corpus import stopwords from nltk.tokenize import sent_tokenize, word_tokenize from nltk.probability import FreqDist import nltk # Download necessary NLTK data nltk.download('punkt') nltk.download('stopwords') load_dotenv() # Load environment variables from .env file # Now replace the hard-coded token with the environment variable HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") def clear_cache(): try: # Clear Gradio cache cache_dir = tempfile.gettempdir() shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True) # Clear any custom cache you might have # For example, if you're caching PDF files or search results: if os.path.exists("output_summary.pdf"): os.remove("output_summary.pdf") # Add any other cache clearing operations here print("Cache cleared successfully.") return "Cache cleared successfully." except Exception as e: print(f"Error clearing cache: {e}") return f"Error clearing cache: {e}" PREDEFINED_QUERIES = { "Recent Earnings": { "query": "{company} recent quarterly earnings", "instructions": "Provide the most recent quarterly earnings data for {company}. Include revenue, net income, loan growth, deposit growth if any, EPS and asset quality. Specify the exact quarter and year." }, "Recent News": { "query": "{company} recent news", "instructions": "Summarize the most recent significant news about {company}. Focus on events that could impact the company's financial performance or stock price." }, "Credit Rating": { "query": "{company} current credit rating", "instructions": "Provide the most recent credit rating for {company}. Include the rating agency, the exact rating, and the date it was issued or last confirmed." }, "Earnings Call Transcript": { "query": "{company} most recent earnings call transcript", "instructions": "Summarize key points from {company}'s most recent earnings call. Include date of the call, major financial highlights, and any significant forward-looking statements." } } _useragent_list = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", ] # Function to extract visible text from HTML content of a webpage def extract_text_from_webpage(html): print("Extracting text from webpage...") soup = BeautifulSoup(html, 'html.parser') for script in soup(["script", "style"]): script.extract() # Remove scripts and styles text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = '\n'.join(chunk for chunk in chunks if chunk) print(f"Extracted text length: {len(text)}") return text # Function to perform a Google search and retrieve results def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): """Performs a Google search and returns the results.""" print(f"Searching for term: {term}") escaped_term = urllib.parse.quote_plus(term) start = 0 all_results = [] max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit with requests.Session() as session: while start < num_results: print(f"Fetching search results starting from: {start}") try: # Choose a random user agent user_agent = random.choice(_useragent_list) headers = { 'User-Agent': user_agent } print(f"Using User-Agent: {headers['User-Agent']}") resp = session.get( url="https://www.google.com/search", headers=headers, params={ "q": term, "num": num_results - start, "hl": lang, "start": start, "safe": safe, }, timeout=timeout, verify=ssl_verify, ) resp.raise_for_status() except requests.exceptions.RequestException as e: print(f"Error fetching search results: {e}") break soup = BeautifulSoup(resp.text, "html.parser") result_block = soup.find_all("div", attrs={"class": "g"}) if not result_block: print("No more results found.") break keywords = term.split() # Use the search term as keywords for filtering for result in result_block: link = result.find("a", href=True) if link: link = link["href"] print(f"Found link: {link}") try: webpage = session.get(link, headers=headers, timeout=timeout) webpage.raise_for_status() visible_text = extract_text_from_webpage(webpage.text) # Apply preprocessing to the visible text preprocessed_text = preprocess_web_content(visible_text, keywords) if len(preprocessed_text) > max_chars_per_page: preprocessed_text = preprocessed_text[:max_chars_per_page] + "..." all_results.append({"link": link, "text": preprocessed_text}) except requests.exceptions.RequestException as e: print(f"Error fetching or processing {link}: {e}") all_results.append({"link": link, "text": None}) else: print("No link found in result.") all_results.append({"link": None, "text": None}) start += len(result_block) print(f"Total results fetched: {len(all_results)}") return all_results def preprocess_text(text): # Remove HTML tags text = BeautifulSoup(text, "html.parser").get_text() # Remove URLs text = re.sub(r'http\S+|www.\S+', '', text) # Remove special characters and digits text = re.sub(r'[^a-zA-Z\s]', '', text) # Remove extra whitespace text = ' '.join(text.split()) # Convert to lowercase text = text.lower() return text def remove_boilerplate(text): # List of common boilerplate phrases to remove boilerplate = [ "all rights reserved", "terms of service", "privacy policy", "cookie policy", "copyright ©", "follow us on social media" ] for phrase in boilerplate: text = text.replace(phrase, '') return text def keyword_filter(text, keywords): sentences = sent_tokenize(text) filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)] return ' '.join(filtered_sentences) def summarize_text(text, num_sentences=3): # Tokenize the text into words words = word_tokenize(text) # Remove stopwords stop_words = set(stopwords.words('english')) words = [word for word in words if word.lower() not in stop_words] # Calculate word frequencies freq_dist = FreqDist(words) # Score sentences based on word frequencies sentences = sent_tokenize(text) sentence_scores = {} for sentence in sentences: for word in word_tokenize(sentence.lower()): if word in freq_dist: if sentence not in sentence_scores: sentence_scores[sentence] = freq_dist[word] else: sentence_scores[sentence] += freq_dist[word] # Get the top N sentences with highest scores summary_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:num_sentences] # Sort the selected sentences in the order they appear in the original text summary_sentences = sorted(summary_sentences, key=text.index) return ' '.join(summary_sentences) def preprocess_web_content(content, keywords): # Apply basic preprocessing preprocessed_text = preprocess_text(content) # Remove boilerplate preprocessed_text = remove_boilerplate(preprocessed_text) # Apply keyword filtering filtered_text = keyword_filter(preprocessed_text, keywords) # Summarize the text summarized_text = summarize_text(filtered_text) return summarized_text # Function to format the prompt for the Hugging Face API def format_prompt(query, search_results, instructions): formatted_results = "" for result in search_results: link = result["link"] text = result["text"] if link: formatted_results += f"URL: {link}\nContent: {text}\n{'-' * 80}\n" else: formatted_results += "No link found.\n" + '-' * 80 + '\n' prompt = f"""Instructions: {instructions} User Query: {query} Web Search Results: {formatted_results} Important: Provide a precise and factual response based solely on the information given above. Include specific dates, numbers, and sources where available. If exact information is not provided in the search results, clearly state that the information is not available in the given context. Do not make assumptions or provide information that is not directly supported by the search results. Assistant:""" return prompt # Function to generate text using Hugging Face API def generate_text(input_text, temperature=0.3, repetition_penalty=1.2, top_p=0.9): print("Generating text using Hugging Face API...") endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" headers = { "Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", "Content-Type": "application/json" } data = { "inputs": input_text, "parameters": { "max_new_tokens": 1000, # Reduced to focus on more concise answers "temperature": temperature, "repetition_penalty": repetition_penalty, "top_p": top_p, "do_sample": True } } try: response = requests.post(endpoint, headers=headers, json=data) response.raise_for_status() # Check if response is JSON try: json_data = response.json() except ValueError: print("Response is not JSON.") return None # Extract generated text from response JSON if isinstance(json_data, list): # Handle list response (if applicable for your use case) generated_text = json_data[0].get("generated_text") if json_data else None elif isinstance(json_data, dict): # Handle dictionary response generated_text = json_data.get("generated_text") else: print("Unexpected response format.") return None if generated_text is not None: print("Text generation complete using Hugging Face API.") print(f"Generated text: {generated_text}") # Debugging line return generated_text else: print("Generated text not found in response.") return None except requests.exceptions.RequestException as e: print(f"Error generating text using Hugging Face API: {e}") return None # Function to read and extract text from a PDF def read_pdf(file_obj): with fitz.open(file_obj.name) as document: text = "" for page_num in range(document.page_count): page = document.load_page(page_num) text += page.get_text() return text # Function to format the prompt with instructions for text generation def format_prompt_with_instructions(text, instructions): prompt = f"{instructions}{text}\n\nAssistant:" return prompt # Function to save text to a PDF def save_text_to_pdf(text, output_path): print(f"Saving text to PDF at {output_path}...") doc = fitz.open() # Create a new PDF document page = doc.new_page() # Create a new page # Set the page margins margin = 50 # 50 points margin page_width = page.rect.width page_height = page.rect.height text_width = page_width - 2 * margin text_height = page_height - 2 * margin # Define font size and line spacing font_size = 9 line_spacing = 1 * font_size fontname = "times-roman" # Use a supported font name # Process the text to handle line breaks and paragraphs paragraphs = text.split("\n") # Split text into paragraphs y_position = margin for paragraph in paragraphs: words = paragraph.split() current_line = "" for word in words: word = str(word) # Ensure word is treated as string # Calculate the length of the current line plus the new word current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname) if current_line_length <= text_width: current_line += " " + word else: page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) y_position += line_spacing if y_position + line_spacing > page_height - margin: page = doc.new_page() # Add a new page if text exceeds page height y_position = margin current_line = word # Add the last line of the paragraph page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) y_position += line_spacing # Add extra space for new paragraph y_position += line_spacing if y_position + line_spacing > page_height - margin: page = doc.new_page() # Add a new page if text exceeds page height y_position = margin doc.save(output_path) # Save the PDF to the specified path print("PDF saved successfully.") # Integrated function to perform web scraping, formatting, and text generation def scrape_and_display(query, num_results, instructions, web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9): print(f"Scraping and displaying results for query: {query} with num_results: {num_results}") if web_search: search_results = google_search(query, num_results) formatted_prompt = format_prompt(query, search_results, instructions) generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) else: formatted_prompt = format_prompt_with_instructions(query, instructions) generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) print("Scraping and display complete.") if generated_summary: # Extract and return text starting from "Assistant:" assistant_index = generated_summary.find("Assistant:") if assistant_index != -1: generated_summary = generated_summary[assistant_index:] else: generated_summary = "Assistant: No response generated." print(f"Generated summary: {generated_summary}") # Debugging line return generated_summary # Main Gradio interface function def gradio_interface(query, use_dashboard, use_pdf, pdf, num_results, custom_instructions, temperature, repetition_penalty, top_p, clear_cache_flag): if clear_cache_flag: return clear_cache() if use_dashboard: results = [] for query_type, query_info in PREDEFINED_QUERIES.items(): formatted_query = query_info['query'].format(company=query) formatted_instructions = query_info['instructions'].format(company=query) result = scrape_and_display(formatted_query, num_results=num_results, instructions=formatted_instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) results.append(f"**{query_type}**\n\n{result}\n\n") generated_summary = "\n".join(results) elif use_pdf and pdf is not None: pdf_text = read_pdf(pdf) generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=custom_instructions, web_search=False, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) else: generated_summary = scrape_and_display(query, num_results=num_results, instructions=custom_instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) output_pdf_path = "output_summary.pdf" save_text_to_pdf(generated_summary, output_pdf_path) return generated_summary, output_pdf_path # Deploy Gradio Interface gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(label="Company Name or Query"), gr.Checkbox(label="Use Dashboard"), gr.Checkbox(label="Use PDF"), gr.File(label="Upload PDF"), gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results"), gr.Textbox(label="Custom Instructions"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Repetition Penalty"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top p"), gr.Checkbox(label="Clear Cache", visible=False) ], outputs=["text", gr.File(label="Generated PDF")], title="Financial Analyst AI Assistant", description="Enter a company name to get a financial dashboard, or enter a custom query. Optionally, upload a PDF for analysis. Adjust parameters as needed for optimal results.", allow_flagging="never" ).launch(share=True)