import os import json import re import gradio as gr import pandas as pd import requests import random import urllib.parse import spacy from sklearn.metrics.pairwise import cosine_similarity import numpy as np from typing import List, Dict from tempfile import NamedTemporaryFile from bs4 import BeautifulSoup from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain_core.prompts import ChatPromptTemplate from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain_core.output_parsers import StrOutputParser from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceHub from langchain_core.documents import Document from sentence_transformers import SentenceTransformer huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") # Load spaCy model nlp = spacy.load("en_core_web_sm") # Load SentenceTransformer model sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') class EnhancedContextDrivenChatbot: def __init__(self, history_size=10): self.history = [] self.history_size = history_size self.entity_tracker = {} def add_to_history(self, text): self.history.append(text) if len(self.history) > self.history_size: self.history.pop(0) # Update entity tracker doc = nlp(text) for ent in doc.ents: if ent.label_ not in self.entity_tracker: self.entity_tracker[ent.label_] = set() self.entity_tracker[ent.label_].add(ent.text) def get_context(self): return " ".join(self.history) def is_follow_up_question(self, question): doc = nlp(question.lower()) follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them']) return any(token.text in follow_up_indicators for token in doc) def extract_topics(self, text): doc = nlp(text) return [chunk.text for chunk in doc.noun_chunks] def get_most_relevant_context(self, question): if not self.history: return question # Create a combined context from history combined_context = self.get_context() # Get embeddings context_embedding = sentence_model.encode([combined_context])[0] question_embedding = sentence_model.encode([question])[0] # Calculate similarity similarity = cosine_similarity([context_embedding], [question_embedding])[0][0] # If similarity is low, it might be a new topic if similarity < 0.3: # This threshold can be adjusted return question # Otherwise, prepend the context return f"{combined_context} {question}" def process_question(self, question): contextualized_question = self.get_most_relevant_context(question) # Extract topics from the question topics = self.extract_topics(question) # Check if it's a follow-up question if self.is_follow_up_question(question): # If it's a follow-up, make sure to include previous context contextualized_question = f"{self.get_context()} {question}" # Add the new question to history self.add_to_history(question) return contextualized_question, topics, self.entity_tracker def load_document(file: NamedTemporaryFile) -> List[Document]: """Loads and splits the document into pages.""" loader = PyPDFLoader(file.name) return loader.load_and_split() def update_vectors(files): if not files: return "Please upload at least one PDF file." embed = get_embeddings() total_chunks = 0 all_data = [] for file in files: data = load_document(file) all_data.extend(data) total_chunks += len(data) if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) database.add_documents(all_data) else: database = FAISS.from_documents(all_data, embed) database.save_local("faiss_database") return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." def get_embeddings(): return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") def clear_cache(): if os.path.exists("faiss_database"): os.remove("faiss_database") return "Cache cleared successfully." else: return "No cache to clear." def get_model(temperature, top_p, repetition_penalty): return HuggingFaceHub( repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={ "temperature": temperature, "top_p": top_p, "repetition_penalty": repetition_penalty, "max_length": 1000 }, huggingfacehub_api_token=huggingface_token ) def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): full_response = "" for i in range(max_chunks): try: chunk = model(prompt + full_response, max_new_tokens=max_tokens) chunk = chunk.strip() if chunk.endswith((".", "!", "?")): full_response += chunk break full_response += chunk except Exception as e: print(f"Error in generate_chunked_response: {e}") break return full_response.strip() def extract_text_from_webpage(html): soup = BeautifulSoup(html, 'html.parser') for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = '\n'.join(chunk for chunk in chunks if chunk) return text _useragent_list = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", ] def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): escaped_term = urllib.parse.quote_plus(term) start = 0 all_results = [] max_chars_per_page = 8000 print(f"Starting Google search for term: '{term}'") with requests.Session() as session: while start < num_results: try: user_agent = random.choice(_useragent_list) headers = { 'User-Agent': user_agent } resp = session.get( url="https://www.google.com/search", headers=headers, params={ "q": term, "num": num_results - start, "hl": lang, "start": start, "safe": safe, }, timeout=timeout, verify=ssl_verify, ) resp.raise_for_status() print(f"Successfully retrieved search results page (start={start})") except requests.exceptions.RequestException as e: print(f"Error retrieving search results: {e}") break soup = BeautifulSoup(resp.text, "html.parser") result_block = soup.find_all("div", attrs={"class": "g"}) if not result_block: print("No results found on this page") break print(f"Found {len(result_block)} results on this page") for result in result_block: link = result.find("a", href=True) if link: link = link["href"] print(f"Processing link: {link}") try: webpage = session.get(link, headers=headers, timeout=timeout) webpage.raise_for_status() visible_text = extract_text_from_webpage(webpage.text) if len(visible_text) > max_chars_per_page: visible_text = visible_text[:max_chars_per_page] + "..." all_results.append({"link": link, "text": visible_text}) print(f"Successfully extracted text from {link}") except requests.exceptions.RequestException as e: print(f"Error retrieving webpage content: {e}") all_results.append({"link": link, "text": None}) else: print("No link found for this result") all_results.append({"link": None, "text": None}) start += len(result_block) print(f"Search completed. Total results: {len(all_results)}") if not all_results: print("No search results found. Returning a default message.") return [{"link": None, "text": "No information found in the web search results."}] return all_results def ask_question(question, temperature, top_p, repetition_penalty, web_search, chatbot): if not question: return "Please enter a question." model = get_model(temperature, top_p, repetition_penalty) embed = get_embeddings() if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) else: database = None max_attempts = 3 context_reduction_factor = 0.7 contextualized_question, topics, entity_tracker = chatbot.process_question(question) if web_search: search_results = google_search(contextualized_question) all_answers = [] for attempt in range(max_attempts): try: web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]] if database is None: database = FAISS.from_documents(web_docs, embed) else: database.add_documents(web_docs) database.save_local("faiss_database") context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs]) prompt_template = """ Answer the question based on the following web search results, conversation context, and entity information: Web Search Results: {context} Conversation Context: {conv_context} Current Question: {question} Topics: {topics} Entity Information: {entities} If the web search results don't contain relevant information, state that the information is not available in the search results. Provide a summarized and direct answer to the question without mentioning the web search or these instructions. Do not include any source information in your answer. """ prompt_val = ChatPromptTemplate.from_template(prompt_template) formatted_prompt = prompt_val.format( context=context_str, conv_context=chatbot.get_context(), question=question, topics=", ".join(topics), entities=json.dumps(entity_tracker) ) full_response = generate_chunked_response(model, formatted_prompt) answer_patterns = [ r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", r"Provide a concise and direct answer to the question:", r"Answer:", r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:", r"Do not include any source information in your answer." ] for pattern in answer_patterns: match = re.split(pattern, full_response, flags=re.IGNORECASE) if len(match) > 1: answer = match[-1].strip() break else: answer = full_response.strip() all_answers.append(answer) break except Exception as e: print(f"Error in ask_question (attempt {attempt + 1}): {e}") if "Input validation error" in str(e) and attempt < max_attempts - 1: print(f"Reducing context length for next attempt") elif attempt == max_attempts - 1: all_answers.append(f"I apologize, but I'm having trouble processing the query due to its length or complexity.") answer = "\n\n".join(all_answers) sources = set(doc.metadata['source'] for doc in web_docs) sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources) answer += sources_section return answer else: for attempt in range(max_attempts): try: if database is None: return "No documents available. Please upload documents or enable web search to answer questions." retriever = database.as_retriever() relevant_docs = retriever.get_relevant_documents(contextualized_question) context_str = "\n".join([doc.page_content for doc in relevant_docs]) if attempt > 0: words = context_str.split() context_str = " ".join(words[:int(len(words) * context_reduction_factor)]) prompt_template = """ Answer the question based on the following context: Context: {context} Current Question: {question} If the context doesn't contain relevant information, state that the information is not available. Provide a summarized and direct answer to the question. Do not include any source information in your answer. """ prompt_val = ChatPromptTemplate.from_template(prompt_template) formatted_prompt = prompt_val.format(context=context_str, question=contextualized_question) full_response = generate_chunked_response(model, formatted_prompt) answer_patterns = [ r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", r"Provide a concise and direct answer to the question:", r"Answer:", r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:", r"Do not include any source information in your answer." ] for pattern in answer_patterns: match = re.split(pattern, full_response, flags=re.IGNORECASE) if len(match) > 1: answer = match[-1].strip() break else: answer = full_response.strip() return answer except Exception as e: print(f"Error in ask_question (attempt {attempt + 1}): {e}") if "Input validation error" in str(e) and attempt < max_attempts - 1: print(f"Reducing context length for next attempt") elif attempt == max_attempts - 1: return f"I apologize, but I'm having trouble processing your question due to its length or complexity. Could you please try rephrasing it more concisely?" return "An unexpected error occurred. Please try again later." # Gradio interface # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Context-Driven Conversational Chatbot") with gr.Row(): file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) update_button = gr.Button("Upload PDF") update_output = gr.Textbox(label="Update Status") update_button.click(update_vectors, inputs=[file_input], outputs=update_output) with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot(label="Conversation") question_input = gr.Textbox(label="Ask a question") submit_button = gr.Button("Submit") with gr.Column(scale=1): temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False) context_driven_chatbot = EnhancedContextDrivenChatbot() def chat(question, history, temperature, top_p, repetition_penalty, web_search): answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, context_driven_chatbot) history.append((question, answer)) return "", history submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot]) clear_button = gr.Button("Clear Cache") clear_output = gr.Textbox(label="Cache Status") clear_button.click(clear_cache, inputs=[], outputs=clear_output) if __name__ == "__main__": demo.launch()