File size: 20,163 Bytes
9fcd7e5
97c6d6a
 
5871ec6
97c6d6a
 
 
 
 
 
 
 
 
 
 
 
328bc48
 
caecf96
328bc48
 
97c6d6a
 
 
 
caecf96
c8169e3
cf0758a
97c6d6a
e6e13d7
209fdb1
e6e13d7
97c6d6a
487fdcd
5a02e5f
caecf96
97c6d6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fcd7e5
97c6d6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8302a1
97c6d6a
 
 
 
 
 
5a02e5f
9723c64
5a02e5f
97c6d6a
 
caecf96
 
 
 
 
 
 
 
 
 
209fdb1
caecf96
58e81de
caecf96
 
 
 
 
 
 
58e81de
caecf96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97c6d6a
5a02e5f
 
97c6d6a
 
 
5a02e5f
 
532ed96
 
 
487fdcd
5a02e5f
532ed96
 
 
 
c3aa982
5a02e5f
c3aa982
 
 
97c6d6a
 
 
 
 
 
 
 
 
 
 
5a02e5f
 
 
 
 
 
 
e2909e8
 
 
5a02e5f
 
e2909e8
 
 
 
ca9bb83
5a02e5f
 
 
 
 
 
 
 
 
 
e2909e8
 
 
 
352e558
e2909e8
 
352e558
be27fd8
 
e2909e8
 
28413b4
 
c8dc358
 
 
 
 
 
 
 
 
774efea
28413b4
 
 
 
 
 
 
 
 
e2909e8
 
 
 
 
 
 
 
5a02e5f
e6e13d7
 
774efea
922ee31
 
 
 
cf0758a
 
774efea
 
 
 
 
 
 
 
 
 
cf0758a
774efea
 
cf0758a
 
922ee31
 
2014e26
 
922ee31
 
b2aeef2
28413b4
 
922ee31
 
 
 
 
 
 
 
 
352e558
 
 
922ee31
 
 
cf0758a
922ee31
352e558
28413b4
e6e13d7
352e558
b2aeef2
 
352e558
 
 
 
 
 
 
 
 
28413b4
5a02e5f
d8d3738
 
 
 
5a02e5f
d8d3738
 
5a02e5f
063c321
 
 
352e558
 
063c321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9bb83
5a02e5f
97c6d6a
 
 
 
5a02e5f
 
97c6d6a
 
 
 
 
c7e4b70
2014e26
774efea
c7e4b70
 
 
fdf4790
 
 
 
c7e4b70
 
 
 
 
 
 
 
 
 
 
 
 
 
487fdcd
5a02e5f
 
 
487fdcd
5a02e5f
ca9bb83
 
 
 
 
e2e8b23
 
 
ca9bb83
 
 
834da36
ca9bb83
5a988b9
 
ca9bb83
 
 
5a02e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9bb83
 
5a02e5f
 
 
ca9bb83
 
 
 
97c6d6a
ca9bb83
 
 
5a02e5f
97c6d6a
 
 
 
 
 
 
 
5a02e5f
97c6d6a
 
 
 
 
ca9bb83
97c6d6a
ca9bb83
 
97c6d6a
 
ca9bb83
97c6d6a
e70dc20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect
import logging


# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"

print(f"ACCOUNT_ID: {ACCOUNT_ID}")
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")

MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "@cf/meta/llama-3.1-8b-instruct"
]

# Initialize LlamaParse
llama_parser = LlamaParse(
    api_key=llama_cloud_api_key,
    result_type="markdown",
    num_workers=4,
    verbose=True,
    language="en",
)

def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
    """Loads and splits the document into pages."""
    if parser == "pypdf":
        loader = PyPDFLoader(file.name)
        return loader.load_and_split()
    elif parser == "llamaparse":
        try:
            documents = llama_parser.load_data(file.name)
            return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
        except Exception as e:
            print(f"Error using Llama Parse: {str(e)}")
            print("Falling back to PyPDF parser")
            loader = PyPDFLoader(file.name)
            return loader.load_and_split()
    else:
        raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def update_vectors(files, parser):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        data = load_document(file, parser)
        all_data.extend(data)
        total_chunks += len(data)
    
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."

def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False):
    print(f"Starting generate_chunked_response with {num_calls} calls")
    full_response = ""
    messages = [{"role": "user", "content": prompt}]
    
    if model == "@cf/meta/llama-3.1-8b-instruct":
        # Cloudflare API
        for i in range(num_calls):
            print(f"Starting Cloudflare API call {i+1}")
            if should_stop:
                print("Stop clicked, breaking loop")
                break
            try:
                response = requests.post(
                    f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
                    headers={"Authorization": f"Bearer {API_TOKEN}"},
                    json={
                        "stream": true,
                        "messages": [
                            {"role": "system", "content": "You are a friendly assistant"},
                            {"role": "user", "content": prompt}
                        ],
                        "max_tokens": max_tokens,
                        "temperature": temperature
                    },
                    stream=true
                )
                
                for line in response.iter_lines():
                    if should_stop:
                        print("Stop clicked during streaming, breaking")
                        break
                    if line:
                        try:
                            json_data = json.loads(line.decode('utf-8').split('data: ')[1])
                            chunk = json_data['response']
                            full_response += chunk
                        except json.JSONDecodeError:
                            continue
                print(f"Cloudflare API call {i+1} completed")
            except Exception as e:
                print(f"Error in generating response from Cloudflare: {str(e)}")
    else:
        # Original Hugging Face API logic
        client = InferenceClient(model, token=huggingface_token)
        
        for i in range(num_calls):
            print(f"Starting Hugging Face API call {i+1}")
            if should_stop:
                print("Stop clicked, breaking loop")
                break
            try:
                for message in client.chat_completion(
                    messages=messages,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    stream=True,
                ):
                    if should_stop:
                        print("Stop clicked during streaming, breaking")
                        break
                    if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                        chunk = message.choices[0].delta.content
                        full_response += chunk
                print(f"Hugging Face API call {i+1} completed")
            except Exception as e:
                print(f"Error in generating response from Hugging Face: {str(e)}")
    
    # Clean up the response
    clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
    clean_response = clean_response.replace("Using the following context:", "").strip()
    clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
    
    # Remove duplicate paragraphs and sentences
    paragraphs = clean_response.split('\n\n')
    unique_paragraphs = []
    for paragraph in paragraphs:
        if paragraph not in unique_paragraphs:
            sentences = paragraph.split('. ')
            unique_sentences = []
            for sentence in sentences:
                if sentence not in unique_sentences:
                    unique_sentences.append(sentence)
            unique_paragraphs.append('. '.join(unique_sentences))
    
    final_response = '\n\n'.join(unique_paragraphs)
    
    print(f"Final clean response: {final_response[:100]}...")
    return final_response

def duckduckgo_search(query):
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
    return results

class CitingSources(BaseModel):
    sources: List[str] = Field(
        ...,
        description="List of sources to cite. Should be an URL of the source."
    )
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
    if not message.strip():
        return "", history

    history = history + [(message, "")]

    try:
        for response in respond(message, history, model, temperature, num_calls, use_web_search):
            history[-1] = (message, response)
            yield history
    except gr.CancelledError:
        yield history
    except Exception as e:
        logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
        history[-1] = (message, f"An unexpected error occurred: {str(e)}")
        yield history

def retry_last_response(history, use_web_search, model, temperature, num_calls):
    if not history:
        return history
    
    last_user_msg = history[-1][0]
    history = history[:-1]  # Remove the last response
    
    return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)

def respond(message, history, model, temperature, num_calls, use_web_search):
    logging.info(f"User Query: {message}")
    logging.info(f"Model Used: {model}")
    logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")

   try:
        if use_web_search:
            for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
                response = f"{main_content}\n\n{sources}" if sources else main_content
                first_line = response.split('\n')[0] if response else ''
                logging.info(f"Generated Response (first line): {first_line}")
                yield response
        else:
            if model == "@cf/meta/llama-3.1-8b-instruct":
                # Use Cloudflare API
                embed = get_embeddings()
                if os.path.exists("faiss_database"):
                    database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
                    retriever = database.as_retriever()
                    relevant_docs = retriever.get_relevant_documents(message)
                    context_str = "\n".join([doc.page_content for doc in relevant_docs])
                else:
                    context_str = "No documents available."
                
                for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
                    first_line = partial_response.split('\n')[0] if partial_response else ''
                    logging.info(f"Generated Response (first line): {first_line}")
                    yield partial_response
            else:
                # Use Hugging Face API
                for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
                    first_line = partial_response.split('\n')[0] if partial_response else ''
                    logging.info(f"Generated Response (first line): {first_line}")
                    yield partial_response
    except Exception as e:
        logging.error(f"Error with {model}: {str(e)}")
        if "microsoft/Phi-3-mini-4k-instruct" in model:
            logging.info("Falling back to Mistral model due to Phi-3 error")
            fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
            yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search)
        else:
            yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."

logging.basicConfig(level=logging.DEBUG)

def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
    headers = {
        "Authorization": f"Bearer {API_TOKEN}",
        "Content-Type": "application/json"
    }
    model = "@cf/meta/llama-3.1-8b-instruct"

    if search_type == "pdf":
        instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'"""
    else:  # web search
        instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    inputs = [
        {"role": "system", "content": instruction},
        {"role": "user", "content": query}
    ]

    payload = {
        "messages": inputs,
        "stream": True,
        "temperature": temperature
    }

    full_response = ""
    for i in range(num_calls):
        try:
            with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
                if response.status_code == 200:
                    for line in response.iter_lines():
                        if line:
                            try:
                                json_response = json.loads(line.decode('utf-8').split('data: ')[1])
                                if 'response' in json_response:
                                    chunk = json_response['response']
                                    full_response += chunk
                                    # Attempt to split the response into main content and sources
                                    main_content, sources = split_content_and_sources(full_response)
                                    yield main_content, sources
                            except (json.JSONDecodeError, IndexError) as e:
                                logging.error(f"Error parsing streaming response: {str(e)}")
                                continue
                else:
                    logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
                    yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later.", ""
        except Exception as e:
            logging.error(f"Error in generating response from Cloudflare: {str(e)}")
            yield f"I apologize, but an error occurred: {str(e)}. Please try again later.", ""
    
    if not full_response:
        yield "I apologize, but I couldn't generate a response at this time. Please try again later.", ""

def split_content_and_sources(text):
    # Attempt to split the text into main content and sources
    parts = text.split("Sources:", 1)
    if len(parts) > 1:
        return parts[0].strip(), "Sources:" + parts[1]
    else:
        return text, ""

def get_response_with_search(query, model, num_calls=3, temperature=0.2):
    search_results = duckduckgo_search(query)
    context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" 
                        for result in search_results if 'body' in result)
    
    prompt = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    if model == "@cf/meta/llama-3.1-8b-instruct":
        # Use Cloudflare API
        for main_content, sources in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
            yield main_content, sources
    else:
        # Use Hugging Face API
        client = InferenceClient(model, token=huggingface_token)
        
        main_content = ""
        for i in range(num_calls):
            for message in client.chat_completion(
                messages=[{"role": "user", "content": prompt}],
                max_tokens=1000,
                temperature=temperature,
                stream=True,
            ):
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    main_content += chunk
                    yield main_content, ""  # Yield partial main content without sources

def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        yield "No documents available. Please upload PDF documents to answer questions."
        return

    retriever = database.as_retriever()
    relevant_docs = retriever.get_relevant_documents(query)
    context_str = "\n".join([doc.page_content for doc in relevant_docs])

    if model == "@cf/meta/llama-3.1-8b-instruct":
        # Use Cloudflare API with the retrieved context
        for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
            yield response
    else:
        # Use Hugging Face API
        prompt = f"""Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'"""
        
        client = InferenceClient(model, token=huggingface_token)
        
        response = ""
        for i in range(num_calls):
            for message in client.chat_completion(
                messages=[{"role": "user", "content": prompt}],
                max_tokens=1000,
                temperature=temperature,
                stream=True,
            ):
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    response += chunk
                    yield response  # Yield partial response

def vote(data: gr.LikeData):
    if data.liked:
        print(f"You upvoted this response: {data.value}")
    else:
        print(f"You downvoted this response: {data.value}")

css = """
/* Add your custom CSS here */
"""

# Define the checkbox outside the demo block
use_web_search = gr.Checkbox(label="Use Web Search", value=False)

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
        use_web_search  # Add this line to include the checkbox
    ],
    title="AI-powered Web Search and PDF Chat Assistant",
    description="Chat with your PDFs or use web search to answer questions.",
    theme=gr.themes.Soft(
        primary_hue="orange",
        secondary_hue="amber",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
    ).set(
        body_background_fill_dark="#0c0505",
        block_background_fill_dark="#0c0505",
        block_border_width="1px",
        block_title_background_fill_dark="#1b0f0f",
        input_background_fill_dark="#140b0b",
        button_secondary_background_fill_dark="#140b0b",
        border_color_accent_dark="#1b0f0f",
        border_color_primary_dark="#1b0f0f",
        background_fill_secondary_dark="#0c0505",
        color_accent_soft_dark="transparent",
        code_background_fill_dark="#140b0b"
    ),
    
    css=css,
    examples=[
        ["Tell me about the contents of the uploaded PDFs."],
        ["What are the main topics discussed in the documents?"],
        ["Can you summarize the key points from the PDFs?"]
    ],
    cache_examples=False,
    analytics_enabled=False,
)

# Add file upload functionality
with demo:
    gr.Markdown("## Upload PDF Documents")

    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
        update_button = gr.Button("Upload Document")
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)

    
    gr.Markdown(
    """
    ## How to use
    1. Upload PDF documents using the file input at the top.
    2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
    3. Ask questions in the chat interface. 
    4. Toggle "Use Web Search" to switch between PDF chat and web search.
    5. Adjust Temperature and Number of API Calls to fine-tune the response generation.
    6. Use the provided examples or ask your own questions.
    """
    )

if __name__ == "__main__":
    demo.launch(share=True)