Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,315 +1,31 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import re
|
4 |
-
import gradio as gr
|
5 |
import requests
|
6 |
-
from duckduckgo_search import DDGS
|
7 |
-
from typing import List
|
8 |
-
from pydantic import BaseModel, Field
|
9 |
-
from tempfile import NamedTemporaryFile
|
10 |
-
from langchain_community.vectorstores import FAISS
|
11 |
-
from langchain_community.document_loaders import PyPDFLoader
|
12 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
-
from llama_parse import LlamaParse
|
14 |
-
from langchain_core.documents import Document
|
15 |
-
from huggingface_hub import InferenceClient
|
16 |
-
import inspect
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
"
|
27 |
-
"
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
)
|
43 |
-
|
44 |
-
def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
|
45 |
-
"""Loads and splits the document into pages."""
|
46 |
-
if parser == "pypdf":
|
47 |
-
loader = PyPDFLoader(file.name)
|
48 |
-
return loader.load_and_split()
|
49 |
-
elif parser == "llamaparse":
|
50 |
-
try:
|
51 |
-
documents = llama_parser.load_data(file.name)
|
52 |
-
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
|
53 |
-
except Exception as e:
|
54 |
-
print(f"Error using Llama Parse: {str(e)}")
|
55 |
-
print("Falling back to PyPDF parser")
|
56 |
-
loader = PyPDFLoader(file.name)
|
57 |
-
return loader.load_and_split()
|
58 |
else:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
63 |
-
|
64 |
-
def update_vectors(files, parser):
|
65 |
-
if not files:
|
66 |
-
return "Please upload at least one PDF file."
|
67 |
-
|
68 |
-
embed = get_embeddings()
|
69 |
-
total_chunks = 0
|
70 |
-
|
71 |
-
all_data = []
|
72 |
-
for file in files:
|
73 |
-
data = load_document(file, parser)
|
74 |
-
all_data.extend(data)
|
75 |
-
total_chunks += len(data)
|
76 |
-
|
77 |
-
if os.path.exists("faiss_database"):
|
78 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
79 |
-
database.add_documents(all_data)
|
80 |
-
else:
|
81 |
-
database = FAISS.from_documents(all_data, embed)
|
82 |
-
|
83 |
-
database.save_local("faiss_database")
|
84 |
-
|
85 |
-
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
86 |
-
|
87 |
-
def generate_chunked_response(prompt, model, max_tokens=1000, max_chunks=5, temperature=0.7):
|
88 |
-
if model == "cloudflare/llama-3.1-8b-instruct":
|
89 |
-
return generate_cloudflare_response(prompt, max_tokens, temperature)
|
90 |
-
|
91 |
-
client = InferenceClient(
|
92 |
-
model,
|
93 |
-
token=huggingface_token,
|
94 |
-
)
|
95 |
-
|
96 |
-
full_response = ""
|
97 |
-
messages = [{"role": "user", "content": prompt}]
|
98 |
-
|
99 |
-
try:
|
100 |
-
for message in client.chat_completion(
|
101 |
-
messages=messages,
|
102 |
-
max_tokens=max_tokens,
|
103 |
-
temperature=temperature,
|
104 |
-
stream=True,
|
105 |
-
):
|
106 |
-
chunk = message.choices[0].delta.content
|
107 |
-
if chunk:
|
108 |
-
full_response += chunk
|
109 |
-
|
110 |
-
except Exception as e:
|
111 |
-
print(f"Error in generating response: {str(e)}")
|
112 |
-
|
113 |
-
# Clean up the response
|
114 |
-
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
115 |
-
clean_response = clean_response.replace("Using the following context:", "").strip()
|
116 |
-
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
|
117 |
-
|
118 |
-
return clean_response
|
119 |
-
|
120 |
-
def generate_cloudflare_response(prompt, max_tokens, temperature):
|
121 |
-
try:
|
122 |
-
response = requests.post(
|
123 |
-
f"https://api.cloudflare.com/client/v4/accounts/{CLOUDFLARE_ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
124 |
-
headers={"Authorization": f"Bearer {CLOUDFLARE_AUTH_TOKEN}"},
|
125 |
-
json={
|
126 |
-
"messages": [
|
127 |
-
{"role": "system", "content": "You are a friendly assistant"},
|
128 |
-
{"role": "user", "content": prompt}
|
129 |
-
],
|
130 |
-
"max_tokens": max_tokens,
|
131 |
-
"temperature": temperature
|
132 |
-
}
|
133 |
-
)
|
134 |
-
|
135 |
-
# Check if the request was successful
|
136 |
-
response.raise_for_status()
|
137 |
-
|
138 |
-
result = response.json()
|
139 |
-
if not result:
|
140 |
-
raise ValueError("Empty response from Cloudflare API")
|
141 |
-
|
142 |
-
if 'result' not in result:
|
143 |
-
raise ValueError(f"Unexpected response format. 'result' key missing. Response: {result}")
|
144 |
-
|
145 |
-
if 'response' not in result['result']:
|
146 |
-
raise ValueError(f"Unexpected response format. 'response' key missing. Result: {result['result']}")
|
147 |
-
|
148 |
-
return result['result']['response']
|
149 |
-
|
150 |
-
except requests.exceptions.RequestException as e:
|
151 |
-
error_message = f"Network error when calling Cloudflare API: {str(e)}"
|
152 |
-
print(error_message)
|
153 |
-
return f"Error: {error_message}"
|
154 |
-
except json.JSONDecodeError as e:
|
155 |
-
error_message = f"Error decoding JSON response from Cloudflare API: {str(e)}"
|
156 |
-
print(error_message)
|
157 |
-
return f"Error: {error_message}"
|
158 |
-
except ValueError as e:
|
159 |
-
error_message = str(e)
|
160 |
-
print(error_message)
|
161 |
-
return f"Error: {error_message}"
|
162 |
-
except Exception as e:
|
163 |
-
error_message = f"Unexpected error in generate_cloudflare_response: {str(e)}"
|
164 |
-
print(error_message)
|
165 |
-
return f"Error: {error_message}"
|
166 |
-
|
167 |
-
|
168 |
-
def duckduckgo_search(query):
|
169 |
-
with DDGS() as ddgs:
|
170 |
-
results = ddgs.text(query, max_results=5)
|
171 |
-
return results
|
172 |
-
|
173 |
-
class CitingSources(BaseModel):
|
174 |
-
sources: List[str] = Field(
|
175 |
-
...,
|
176 |
-
description="List of sources to cite. Should be an URL of the source."
|
177 |
-
)
|
178 |
-
|
179 |
-
def get_response_from_pdf(query, model, temperature=0.7):
|
180 |
-
embed = get_embeddings()
|
181 |
-
if os.path.exists("faiss_database"):
|
182 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
183 |
-
else:
|
184 |
-
return "No documents available. Please upload PDF documents to answer questions."
|
185 |
-
|
186 |
-
retriever = database.as_retriever()
|
187 |
-
relevant_docs = retriever.get_relevant_documents(query)
|
188 |
-
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
189 |
-
|
190 |
-
prompt = f"""<s>[INST] Using the following context from the PDF documents:
|
191 |
-
{context_str}
|
192 |
-
Write a detailed and complete response that answers the following user question: '{query}'
|
193 |
-
Do not include a list of sources in your response. [/INST]"""
|
194 |
-
|
195 |
-
generated_text = generate_chunked_response(prompt, model, temperature=temperature)
|
196 |
-
|
197 |
-
# Clean the response
|
198 |
-
clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
|
199 |
-
clean_text = clean_text.replace("Using the following context from the PDF documents:", "").strip()
|
200 |
-
|
201 |
-
return clean_text
|
202 |
-
|
203 |
-
def get_response_with_search(query, model, temperature=0.7):
|
204 |
-
search_results = duckduckgo_search(query)
|
205 |
-
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
206 |
-
for result in search_results if 'body' in result)
|
207 |
-
|
208 |
-
prompt = f"""<s>[INST] Using the following context:
|
209 |
-
{context}
|
210 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
211 |
-
After writing the document, please provide a list of sources used in your response. [/INST]"""
|
212 |
-
|
213 |
-
generated_text = generate_chunked_response(prompt, model, temperature=temperature)
|
214 |
-
|
215 |
-
# Clean the response
|
216 |
-
clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
|
217 |
-
clean_text = clean_text.replace("Using the following context:", "").strip()
|
218 |
-
|
219 |
-
# Split the content and sources
|
220 |
-
parts = clean_text.split("Sources:", 1)
|
221 |
-
main_content = parts[0].strip()
|
222 |
-
sources = parts[1].strip() if len(parts) > 1 else ""
|
223 |
-
|
224 |
-
return main_content, sources
|
225 |
-
|
226 |
-
def chatbot_interface(message, history, use_web_search, model, temperature):
|
227 |
-
if not message.strip(): # Check if the message is empty or just whitespace
|
228 |
-
return history
|
229 |
-
|
230 |
-
if use_web_search:
|
231 |
-
main_content, sources = get_response_with_search(message, model, temperature)
|
232 |
-
formatted_response = f"{main_content}\n\nSources:\n{sources}"
|
233 |
-
else:
|
234 |
-
response = get_response_from_pdf(message, model, temperature)
|
235 |
-
formatted_response = response
|
236 |
-
|
237 |
-
# Check if the last message in history is the same as the current message
|
238 |
-
if history and history[-1][0] == message:
|
239 |
-
# Replace the last response instead of adding a new one
|
240 |
-
history[-1] = (message, formatted_response)
|
241 |
-
else:
|
242 |
-
# Add the new message-response pair
|
243 |
-
history.append((message, formatted_response))
|
244 |
-
|
245 |
-
return history
|
246 |
-
|
247 |
-
|
248 |
-
def clear_and_update_chat(message, history, use_web_search, model, temperature):
|
249 |
-
updated_history = chatbot_interface(message, history, use_web_search, model, temperature)
|
250 |
-
return "", updated_history # Return empty string to clear the input
|
251 |
-
|
252 |
-
# Gradio interface
|
253 |
-
with gr.Blocks() as demo:
|
254 |
-
|
255 |
-
is_generating = gr.State(False)
|
256 |
-
|
257 |
-
def protected_clear_and_update_chat(message, history, use_web_search, model, temperature, is_generating):
|
258 |
-
if is_generating:
|
259 |
-
return message, history, is_generating
|
260 |
-
is_generating = True
|
261 |
-
updated_message, updated_history = clear_and_update_chat(message, history, use_web_search, model, temperature)
|
262 |
-
is_generating = False
|
263 |
-
return updated_message, updated_history, is_generating
|
264 |
-
|
265 |
-
gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
|
266 |
-
|
267 |
-
with gr.Row():
|
268 |
-
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
269 |
-
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
|
270 |
-
update_button = gr.Button("Upload Document")
|
271 |
-
|
272 |
-
update_output = gr.Textbox(label="Update Status")
|
273 |
-
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
|
274 |
-
|
275 |
-
chatbot = gr.Chatbot(label="Conversation")
|
276 |
-
msg = gr.Textbox(label="Ask a question")
|
277 |
-
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
278 |
-
|
279 |
-
with gr.Row():
|
280 |
-
model_dropdown = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2])
|
281 |
-
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
|
282 |
-
|
283 |
-
submit = gr.Button("Submit")
|
284 |
-
|
285 |
-
gr.Examples(
|
286 |
-
examples=[
|
287 |
-
["What are the latest developments in AI?"],
|
288 |
-
["Tell me about recent updates on GitHub"],
|
289 |
-
["What are the best hotels in Galapagos, Ecuador?"],
|
290 |
-
["Summarize recent advancements in Python programming"],
|
291 |
-
],
|
292 |
-
inputs=msg,
|
293 |
-
)
|
294 |
-
|
295 |
-
submit.click(protected_clear_and_update_chat,
|
296 |
-
inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating],
|
297 |
-
outputs=[msg, chatbot, is_generating])
|
298 |
-
msg.submit(protected_clear_and_update_chat,
|
299 |
-
inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating],
|
300 |
-
outputs=[msg, chatbot, is_generating])
|
301 |
-
|
302 |
-
gr.Markdown(
|
303 |
-
"""
|
304 |
-
## How to use
|
305 |
-
1. Upload PDF documents using the file input at the top.
|
306 |
-
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
307 |
-
3. Ask questions in the textbox.
|
308 |
-
4. Toggle "Use Web Search" to switch between PDF chat and web search.
|
309 |
-
5. Adjust Temperature and Repetition Penalty sliders to fine-tune the response generation.
|
310 |
-
6. Click "Submit" or press Enter to get a response.
|
311 |
-
"""
|
312 |
-
)
|
313 |
-
|
314 |
-
if __name__ == "__main__":
|
315 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
# Replace with your actual Cloudflare API token
|
4 |
+
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
|
5 |
+
|
6 |
+
# Cloudflare API endpoint for getting account details
|
7 |
+
url = "https://api.cloudflare.com/client/v4/accounts"
|
8 |
+
|
9 |
+
# Headers for the API request
|
10 |
+
headers = {
|
11 |
+
"Authorization": f"Bearer {API_TOKEN}",
|
12 |
+
"Content-Type": "application/json"
|
13 |
+
}
|
14 |
+
|
15 |
+
# Making the API request
|
16 |
+
response = requests.get(url, headers=headers)
|
17 |
+
|
18 |
+
# Checking if the request was successful
|
19 |
+
if response.status_code == 200:
|
20 |
+
# Parsing the JSON response
|
21 |
+
data = response.json()
|
22 |
+
if data['success']:
|
23 |
+
accounts = data['result']
|
24 |
+
for account in accounts:
|
25 |
+
account_id = account['id']
|
26 |
+
account_name = account['name']
|
27 |
+
print(f"Account Name: {account_name}, Account ID: {account_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
else:
|
29 |
+
print("Error fetching account details:", data['errors'])
|
30 |
+
else:
|
31 |
+
print("Failed to fetch account details. HTTP Status Code:", response.status_code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|