Shreyas094 commited on
Commit
015d1f8
·
verified ·
1 Parent(s): 550c8e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -312
app.py CHANGED
@@ -1,315 +1,31 @@
1
- import os
2
- import json
3
- import re
4
- import gradio as gr
5
  import requests
6
- from duckduckgo_search import DDGS
7
- from typing import List
8
- from pydantic import BaseModel, Field
9
- from tempfile import NamedTemporaryFile
10
- from langchain_community.vectorstores import FAISS
11
- from langchain_community.document_loaders import PyPDFLoader
12
- from langchain_community.embeddings import HuggingFaceEmbeddings
13
- from llama_parse import LlamaParse
14
- from langchain_core.documents import Document
15
- from huggingface_hub import InferenceClient
16
- import inspect
17
 
18
- # Environment variables and configurations
19
- huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
20
- llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
21
- CLOUDFLARE_ACCOUNT_ID = os.environ.get("CLOUDFLARE_ACCOUNT_ID")
22
- CLOUDFLARE_AUTH_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
23
-
24
- MODELS = [
25
- "Qwen/Qwen2-72B-Instruct",
26
- "google/gemma-2-9b",
27
- "microsoft/Phi-3-mini-4k-instruct",
28
- "Qwen/Qwen2-7B-Instruct",
29
- "mistralai/Mistral-Nemo-Instruct-2407",
30
- "mistralai/Mistral-7B-Instruct-v0.3",
31
- "mistralai/Mixtral-8x7B-Instruct-v0.1",
32
- "cloudflare/llama-3.1-8b-instruct" # Added Cloudflare Llama 3.1 model
33
- ]
34
-
35
- # Initialize LlamaParse
36
- llama_parser = LlamaParse(
37
- api_key=llama_cloud_api_key,
38
- result_type="markdown",
39
- num_workers=4,
40
- verbose=True,
41
- language="en",
42
- )
43
-
44
- def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
45
- """Loads and splits the document into pages."""
46
- if parser == "pypdf":
47
- loader = PyPDFLoader(file.name)
48
- return loader.load_and_split()
49
- elif parser == "llamaparse":
50
- try:
51
- documents = llama_parser.load_data(file.name)
52
- return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
53
- except Exception as e:
54
- print(f"Error using Llama Parse: {str(e)}")
55
- print("Falling back to PyPDF parser")
56
- loader = PyPDFLoader(file.name)
57
- return loader.load_and_split()
58
  else:
59
- raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
60
-
61
- def get_embeddings():
62
- return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
63
-
64
- def update_vectors(files, parser):
65
- if not files:
66
- return "Please upload at least one PDF file."
67
-
68
- embed = get_embeddings()
69
- total_chunks = 0
70
-
71
- all_data = []
72
- for file in files:
73
- data = load_document(file, parser)
74
- all_data.extend(data)
75
- total_chunks += len(data)
76
-
77
- if os.path.exists("faiss_database"):
78
- database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
79
- database.add_documents(all_data)
80
- else:
81
- database = FAISS.from_documents(all_data, embed)
82
-
83
- database.save_local("faiss_database")
84
-
85
- return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
86
-
87
- def generate_chunked_response(prompt, model, max_tokens=1000, max_chunks=5, temperature=0.7):
88
- if model == "cloudflare/llama-3.1-8b-instruct":
89
- return generate_cloudflare_response(prompt, max_tokens, temperature)
90
-
91
- client = InferenceClient(
92
- model,
93
- token=huggingface_token,
94
- )
95
-
96
- full_response = ""
97
- messages = [{"role": "user", "content": prompt}]
98
-
99
- try:
100
- for message in client.chat_completion(
101
- messages=messages,
102
- max_tokens=max_tokens,
103
- temperature=temperature,
104
- stream=True,
105
- ):
106
- chunk = message.choices[0].delta.content
107
- if chunk:
108
- full_response += chunk
109
-
110
- except Exception as e:
111
- print(f"Error in generating response: {str(e)}")
112
-
113
- # Clean up the response
114
- clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
115
- clean_response = clean_response.replace("Using the following context:", "").strip()
116
- clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
117
-
118
- return clean_response
119
-
120
- def generate_cloudflare_response(prompt, max_tokens, temperature):
121
- try:
122
- response = requests.post(
123
- f"https://api.cloudflare.com/client/v4/accounts/{CLOUDFLARE_ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
124
- headers={"Authorization": f"Bearer {CLOUDFLARE_AUTH_TOKEN}"},
125
- json={
126
- "messages": [
127
- {"role": "system", "content": "You are a friendly assistant"},
128
- {"role": "user", "content": prompt}
129
- ],
130
- "max_tokens": max_tokens,
131
- "temperature": temperature
132
- }
133
- )
134
-
135
- # Check if the request was successful
136
- response.raise_for_status()
137
-
138
- result = response.json()
139
- if not result:
140
- raise ValueError("Empty response from Cloudflare API")
141
-
142
- if 'result' not in result:
143
- raise ValueError(f"Unexpected response format. 'result' key missing. Response: {result}")
144
-
145
- if 'response' not in result['result']:
146
- raise ValueError(f"Unexpected response format. 'response' key missing. Result: {result['result']}")
147
-
148
- return result['result']['response']
149
-
150
- except requests.exceptions.RequestException as e:
151
- error_message = f"Network error when calling Cloudflare API: {str(e)}"
152
- print(error_message)
153
- return f"Error: {error_message}"
154
- except json.JSONDecodeError as e:
155
- error_message = f"Error decoding JSON response from Cloudflare API: {str(e)}"
156
- print(error_message)
157
- return f"Error: {error_message}"
158
- except ValueError as e:
159
- error_message = str(e)
160
- print(error_message)
161
- return f"Error: {error_message}"
162
- except Exception as e:
163
- error_message = f"Unexpected error in generate_cloudflare_response: {str(e)}"
164
- print(error_message)
165
- return f"Error: {error_message}"
166
-
167
-
168
- def duckduckgo_search(query):
169
- with DDGS() as ddgs:
170
- results = ddgs.text(query, max_results=5)
171
- return results
172
-
173
- class CitingSources(BaseModel):
174
- sources: List[str] = Field(
175
- ...,
176
- description="List of sources to cite. Should be an URL of the source."
177
- )
178
-
179
- def get_response_from_pdf(query, model, temperature=0.7):
180
- embed = get_embeddings()
181
- if os.path.exists("faiss_database"):
182
- database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
183
- else:
184
- return "No documents available. Please upload PDF documents to answer questions."
185
-
186
- retriever = database.as_retriever()
187
- relevant_docs = retriever.get_relevant_documents(query)
188
- context_str = "\n".join([doc.page_content for doc in relevant_docs])
189
-
190
- prompt = f"""<s>[INST] Using the following context from the PDF documents:
191
- {context_str}
192
- Write a detailed and complete response that answers the following user question: '{query}'
193
- Do not include a list of sources in your response. [/INST]"""
194
-
195
- generated_text = generate_chunked_response(prompt, model, temperature=temperature)
196
-
197
- # Clean the response
198
- clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
199
- clean_text = clean_text.replace("Using the following context from the PDF documents:", "").strip()
200
-
201
- return clean_text
202
-
203
- def get_response_with_search(query, model, temperature=0.7):
204
- search_results = duckduckgo_search(query)
205
- context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
206
- for result in search_results if 'body' in result)
207
-
208
- prompt = f"""<s>[INST] Using the following context:
209
- {context}
210
- Write a detailed and complete research document that fulfills the following user request: '{query}'
211
- After writing the document, please provide a list of sources used in your response. [/INST]"""
212
-
213
- generated_text = generate_chunked_response(prompt, model, temperature=temperature)
214
-
215
- # Clean the response
216
- clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
217
- clean_text = clean_text.replace("Using the following context:", "").strip()
218
-
219
- # Split the content and sources
220
- parts = clean_text.split("Sources:", 1)
221
- main_content = parts[0].strip()
222
- sources = parts[1].strip() if len(parts) > 1 else ""
223
-
224
- return main_content, sources
225
-
226
- def chatbot_interface(message, history, use_web_search, model, temperature):
227
- if not message.strip(): # Check if the message is empty or just whitespace
228
- return history
229
-
230
- if use_web_search:
231
- main_content, sources = get_response_with_search(message, model, temperature)
232
- formatted_response = f"{main_content}\n\nSources:\n{sources}"
233
- else:
234
- response = get_response_from_pdf(message, model, temperature)
235
- formatted_response = response
236
-
237
- # Check if the last message in history is the same as the current message
238
- if history and history[-1][0] == message:
239
- # Replace the last response instead of adding a new one
240
- history[-1] = (message, formatted_response)
241
- else:
242
- # Add the new message-response pair
243
- history.append((message, formatted_response))
244
-
245
- return history
246
-
247
-
248
- def clear_and_update_chat(message, history, use_web_search, model, temperature):
249
- updated_history = chatbot_interface(message, history, use_web_search, model, temperature)
250
- return "", updated_history # Return empty string to clear the input
251
-
252
- # Gradio interface
253
- with gr.Blocks() as demo:
254
-
255
- is_generating = gr.State(False)
256
-
257
- def protected_clear_and_update_chat(message, history, use_web_search, model, temperature, is_generating):
258
- if is_generating:
259
- return message, history, is_generating
260
- is_generating = True
261
- updated_message, updated_history = clear_and_update_chat(message, history, use_web_search, model, temperature)
262
- is_generating = False
263
- return updated_message, updated_history, is_generating
264
-
265
- gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
266
-
267
- with gr.Row():
268
- file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
269
- parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
270
- update_button = gr.Button("Upload Document")
271
-
272
- update_output = gr.Textbox(label="Update Status")
273
- update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
274
-
275
- chatbot = gr.Chatbot(label="Conversation")
276
- msg = gr.Textbox(label="Ask a question")
277
- use_web_search = gr.Checkbox(label="Use Web Search", value=False)
278
-
279
- with gr.Row():
280
- model_dropdown = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2])
281
- temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
282
-
283
- submit = gr.Button("Submit")
284
-
285
- gr.Examples(
286
- examples=[
287
- ["What are the latest developments in AI?"],
288
- ["Tell me about recent updates on GitHub"],
289
- ["What are the best hotels in Galapagos, Ecuador?"],
290
- ["Summarize recent advancements in Python programming"],
291
- ],
292
- inputs=msg,
293
- )
294
-
295
- submit.click(protected_clear_and_update_chat,
296
- inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating],
297
- outputs=[msg, chatbot, is_generating])
298
- msg.submit(protected_clear_and_update_chat,
299
- inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating],
300
- outputs=[msg, chatbot, is_generating])
301
-
302
- gr.Markdown(
303
- """
304
- ## How to use
305
- 1. Upload PDF documents using the file input at the top.
306
- 2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
307
- 3. Ask questions in the textbox.
308
- 4. Toggle "Use Web Search" to switch between PDF chat and web search.
309
- 5. Adjust Temperature and Repetition Penalty sliders to fine-tune the response generation.
310
- 6. Click "Submit" or press Enter to get a response.
311
- """
312
- )
313
-
314
- if __name__ == "__main__":
315
- demo.launch(share=True)
 
 
 
 
 
1
  import requests
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ # Replace with your actual Cloudflare API token
4
+ API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
5
+
6
+ # Cloudflare API endpoint for getting account details
7
+ url = "https://api.cloudflare.com/client/v4/accounts"
8
+
9
+ # Headers for the API request
10
+ headers = {
11
+ "Authorization": f"Bearer {API_TOKEN}",
12
+ "Content-Type": "application/json"
13
+ }
14
+
15
+ # Making the API request
16
+ response = requests.get(url, headers=headers)
17
+
18
+ # Checking if the request was successful
19
+ if response.status_code == 200:
20
+ # Parsing the JSON response
21
+ data = response.json()
22
+ if data['success']:
23
+ accounts = data['result']
24
+ for account in accounts:
25
+ account_id = account['id']
26
+ account_name = account['name']
27
+ print(f"Account Name: {account_name}, Account ID: {account_id}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  else:
29
+ print("Error fetching account details:", data['errors'])
30
+ else:
31
+ print("Failed to fetch account details. HTTP Status Code:", response.status_code)