Shreyas094 commited on
Commit
31d72b9
·
verified ·
1 Parent(s): 621fd6d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -17
app.py CHANGED
@@ -46,19 +46,19 @@ llama_parser = LlamaParse(
46
  language="en",
47
  )
48
 
49
- def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
50
  """Loads and splits the document into pages."""
51
  if parser == "pypdf":
52
- loader = PyPDFLoader(file.name)
53
  return loader.load_and_split()
54
  elif parser == "llamaparse":
55
  try:
56
- documents = llama_parser.load_data(file.name)
57
- return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
58
  except Exception as e:
59
  print(f"Error using Llama Parse: {str(e)}")
60
  print("Falling back to PyPDF parser")
61
- loader = PyPDFLoader(file.name)
62
  return loader.load_and_split()
63
  else:
64
  raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
@@ -85,7 +85,12 @@ def update_vectors(files, parser):
85
  for file in files:
86
  logging.info(f"Processing file: {file.name}")
87
  try:
88
- data = load_document(file, parser)
 
 
 
 
 
89
  logging.info(f"Loaded {len(data)} chunks from {file.name}")
90
  all_data.extend(data)
91
  total_chunks += len(data)
@@ -100,16 +105,10 @@ def update_vectors(files, parser):
100
 
101
  logging.info(f"Total chunks processed: {total_chunks}")
102
 
103
- if os.path.exists("faiss_database"):
104
- logging.info("Updating existing FAISS database")
105
- database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
106
- database.add_documents(all_data)
107
- else:
108
- logging.info("Creating new FAISS database")
109
  database = FAISS.from_documents(all_data, embed)
110
-
111
- database.save_local("faiss_database")
112
- logging.info("FAISS database saved")
113
 
114
  return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
115
  choices=[doc["name"] for doc in uploaded_documents],
@@ -117,6 +116,52 @@ def update_vectors(files, parser):
117
  label="Select documents to query"
118
  )
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
121
  print(f"Starting generate_chunked_response with {num_calls} calls")
122
  full_response = ""
@@ -247,7 +292,6 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
247
  logging.info(f"User Query: {message}")
248
  logging.info(f"Model Used: {model}")
249
  logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
250
-
251
  logging.info(f"Selected Documents: {selected_docs}")
252
 
253
  try:
@@ -265,7 +309,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
265
 
266
  # Filter relevant documents based on user selection
267
  all_relevant_docs = retriever.get_relevant_documents(message)
268
- relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
269
 
270
  if not relevant_docs:
271
  yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
 
46
  language="en",
47
  )
48
 
49
+ def load_document(file_path: str, parser: str = "llamaparse") -> List[Document]:
50
  """Loads and splits the document into pages."""
51
  if parser == "pypdf":
52
+ loader = PyPDFLoader(file_path)
53
  return loader.load_and_split()
54
  elif parser == "llamaparse":
55
  try:
56
+ documents = llama_parser.load_data(file_path)
57
+ return [Document(page_content=doc.text, metadata={"source": file_path}) for doc in documents]
58
  except Exception as e:
59
  print(f"Error using Llama Parse: {str(e)}")
60
  print("Falling back to PyPDF parser")
61
+ loader = PyPDFLoader(file_path)
62
  return loader.load_and_split()
63
  else:
64
  raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
 
85
  for file in files:
86
  logging.info(f"Processing file: {file.name}")
87
  try:
88
+ # Save the uploaded file
89
+ os.makedirs("uploaded_files", exist_ok=True)
90
+ file_path = os.path.join("uploaded_files", file.name)
91
+ file.save(file_path)
92
+
93
+ data = load_document(file_path, parser)
94
  logging.info(f"Loaded {len(data)} chunks from {file.name}")
95
  all_data.extend(data)
96
  total_chunks += len(data)
 
105
 
106
  logging.info(f"Total chunks processed: {total_chunks}")
107
 
108
+ if all_data:
 
 
 
 
 
109
  database = FAISS.from_documents(all_data, embed)
110
+ database.save_local("faiss_database")
111
+ logging.info("FAISS database saved")
 
112
 
113
  return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
114
  choices=[doc["name"] for doc in uploaded_documents],
 
116
  label="Select documents to query"
117
  )
118
 
119
+ def delete_selected_files(selected_files):
120
+ global uploaded_documents
121
+ if not selected_files:
122
+ return "No files selected for deletion.", document_selector
123
+
124
+ deleted_files = []
125
+ for file_name in selected_files:
126
+ # Remove the file from uploaded_documents
127
+ uploaded_documents = [doc for doc in uploaded_documents if doc["name"] != file_name]
128
+
129
+ # Delete the file from the file system if it exists
130
+ file_path = os.path.join("uploaded_files", file_name)
131
+ if os.path.exists(file_path):
132
+ os.remove(file_path)
133
+
134
+ deleted_files.append(file_name)
135
+
136
+ # Update the FAISS database
137
+ update_faiss_database()
138
+
139
+ remaining_files = [doc["name"] for doc in uploaded_documents]
140
+ return f"Deleted files: {', '.join(deleted_files)}", gr.CheckboxGroup(choices=remaining_files, value=remaining_files, label="Select documents to query")
141
+
142
+ def update_faiss_database():
143
+ global uploaded_documents
144
+
145
+ embed = get_embeddings()
146
+ all_data = []
147
+
148
+ for doc in uploaded_documents:
149
+ file_path = os.path.join("uploaded_files", doc["name"])
150
+ if os.path.exists(file_path):
151
+ data = load_document(file_path, parser="llamaparse") # or use your preferred parser
152
+ all_data.extend(data)
153
+
154
+ if all_data:
155
+ database = FAISS.from_documents(all_data, embed)
156
+ database.save_local("faiss_database")
157
+ logging.info("FAISS database updated after deletion")
158
+ else:
159
+ # If no documents left, remove the FAISS database
160
+ if os.path.exists("faiss_database"):
161
+ import shutil
162
+ shutil.rmtree("faiss_database")
163
+ logging.info("All documents deleted, FAISS database removed")
164
+
165
  def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
166
  print(f"Starting generate_chunked_response with {num_calls} calls")
167
  full_response = ""
 
292
  logging.info(f"User Query: {message}")
293
  logging.info(f"Model Used: {model}")
294
  logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
 
295
  logging.info(f"Selected Documents: {selected_docs}")
296
 
297
  try:
 
309
 
310
  # Filter relevant documents based on user selection
311
  all_relevant_docs = retriever.get_relevant_documents(message)
312
+ relevant_docs = [doc for doc in all_relevant_docs if os.path.basename(doc.metadata["source"]) in selected_docs]
313
 
314
  if not relevant_docs:
315
  yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."