Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -45,6 +45,8 @@ llama_parser = LlamaParse(
|
|
45 |
language="en",
|
46 |
)
|
47 |
|
|
|
|
|
48 |
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
49 |
"""Loads and splits the document into pages."""
|
50 |
if parser == "pypdf":
|
@@ -66,6 +68,7 @@ def get_embeddings():
|
|
66 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
67 |
|
68 |
def update_vectors(files, parser):
|
|
|
69 |
if not files:
|
70 |
return "Please upload at least one PDF file."
|
71 |
|
@@ -77,6 +80,7 @@ def update_vectors(files, parser):
|
|
77 |
data = load_document(file, parser)
|
78 |
all_data.extend(data)
|
79 |
total_chunks += len(data)
|
|
|
80 |
|
81 |
if os.path.exists("faiss_database"):
|
82 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
@@ -214,10 +218,11 @@ def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
|
214 |
|
215 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
216 |
|
217 |
-
def respond(message, history, model, temperature, num_calls, use_web_search):
|
218 |
logging.info(f"User Query: {message}")
|
219 |
logging.info(f"Model Used: {model}")
|
220 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
|
|
221 |
|
222 |
try:
|
223 |
if use_web_search:
|
@@ -231,10 +236,20 @@ def respond(message, history, model, temperature, num_calls, use_web_search):
|
|
231 |
if os.path.exists("faiss_database"):
|
232 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
233 |
retriever = database.as_retriever()
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
236 |
else:
|
237 |
context_str = "No documents available."
|
|
|
|
|
238 |
|
239 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
240 |
# Use Cloudflare API
|
@@ -244,7 +259,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search):
|
|
244 |
yield partial_response
|
245 |
else:
|
246 |
# Use Hugging Face API
|
247 |
-
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
248 |
first_line = partial_response.split('\n')[0] if partial_response else ''
|
249 |
logging.info(f"Generated Response (first line): {first_line}")
|
250 |
yield partial_response
|
@@ -253,7 +268,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search):
|
|
253 |
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
254 |
logging.info("Falling back to Mistral model due to Phi-3 error")
|
255 |
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
256 |
-
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search)
|
257 |
else:
|
258 |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
259 |
|
@@ -344,7 +359,7 @@ After writing the document, please provide a list of sources used in your respon
|
|
344 |
main_content += chunk
|
345 |
yield main_content, "" # Yield partial main content without sources
|
346 |
|
347 |
-
def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
348 |
embed = get_embeddings()
|
349 |
if os.path.exists("faiss_database"):
|
350 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
@@ -354,7 +369,11 @@ def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
|
354 |
|
355 |
retriever = database.as_retriever()
|
356 |
relevant_docs = retriever.get_relevant_documents(query)
|
357 |
-
|
|
|
|
|
|
|
|
|
358 |
|
359 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
360 |
# Use Cloudflare API with the retrieved context
|
@@ -392,6 +411,15 @@ css = """
|
|
392 |
"""
|
393 |
|
394 |
# Define the checkbox outside the demo block
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
396 |
|
397 |
demo = gr.ChatInterface(
|
@@ -400,7 +428,8 @@ demo = gr.ChatInterface(
|
|
400 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
|
401 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
402 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
403 |
-
use_web_search
|
|
|
404 |
],
|
405 |
title="AI-powered Web Search and PDF Chat Assistant",
|
406 |
description="Chat with your PDFs or use web search to answer questions.",
|
|
|
45 |
language="en",
|
46 |
)
|
47 |
|
48 |
+
uploaded_documents = []
|
49 |
+
|
50 |
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
51 |
"""Loads and splits the document into pages."""
|
52 |
if parser == "pypdf":
|
|
|
68 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
69 |
|
70 |
def update_vectors(files, parser):
|
71 |
+
global uploaded_documents
|
72 |
if not files:
|
73 |
return "Please upload at least one PDF file."
|
74 |
|
|
|
80 |
data = load_document(file, parser)
|
81 |
all_data.extend(data)
|
82 |
total_chunks += len(data)
|
83 |
+
uploaded_documents.append({"name": file.name, "selected": True})
|
84 |
|
85 |
if os.path.exists("faiss_database"):
|
86 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
218 |
|
219 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
220 |
|
221 |
+
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
222 |
logging.info(f"User Query: {message}")
|
223 |
logging.info(f"Model Used: {model}")
|
224 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
225 |
+
logging.info(f"Selected Documents: {selected_docs}")
|
226 |
|
227 |
try:
|
228 |
if use_web_search:
|
|
|
236 |
if os.path.exists("faiss_database"):
|
237 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
238 |
retriever = database.as_retriever()
|
239 |
+
|
240 |
+
# Filter relevant documents based on user selection
|
241 |
+
all_relevant_docs = retriever.get_relevant_documents(message)
|
242 |
+
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
243 |
+
|
244 |
+
if not relevant_docs:
|
245 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
246 |
+
return
|
247 |
+
|
248 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
249 |
else:
|
250 |
context_str = "No documents available."
|
251 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
252 |
+
return
|
253 |
|
254 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
255 |
# Use Cloudflare API
|
|
|
259 |
yield partial_response
|
260 |
else:
|
261 |
# Use Hugging Face API
|
262 |
+
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
263 |
first_line = partial_response.split('\n')[0] if partial_response else ''
|
264 |
logging.info(f"Generated Response (first line): {first_line}")
|
265 |
yield partial_response
|
|
|
268 |
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
269 |
logging.info("Falling back to Mistral model due to Phi-3 error")
|
270 |
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
271 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
272 |
else:
|
273 |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
274 |
|
|
|
359 |
main_content += chunk
|
360 |
yield main_content, "" # Yield partial main content without sources
|
361 |
|
362 |
+
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
363 |
embed = get_embeddings()
|
364 |
if os.path.exists("faiss_database"):
|
365 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
369 |
|
370 |
retriever = database.as_retriever()
|
371 |
relevant_docs = retriever.get_relevant_documents(query)
|
372 |
+
|
373 |
+
# Filter relevant_docs based on selected documents
|
374 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
375 |
+
|
376 |
+
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
377 |
|
378 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
379 |
# Use Cloudflare API with the retrieved context
|
|
|
411 |
"""
|
412 |
|
413 |
# Define the checkbox outside the demo block
|
414 |
+
def display_documents():
|
415 |
+
return gr.CheckboxGroup(
|
416 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
417 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
418 |
+
label="Select documents to query"
|
419 |
+
)
|
420 |
+
|
421 |
+
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
422 |
+
|
423 |
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
424 |
|
425 |
demo = gr.ChatInterface(
|
|
|
428 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
|
429 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
430 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
431 |
+
use_web_search,
|
432 |
+
document_selector # Add this line to include the document selector
|
433 |
],
|
434 |
title="AI-powered Web Search and PDF Chat Assistant",
|
435 |
description="Chat with your PDFs or use web search to answer questions.",
|