Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,432 +1,5 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import re
|
4 |
-
import gradio as gr
|
5 |
-
import requests
|
6 |
-
from duckduckgo_search import DDGS
|
7 |
-
from typing import List
|
8 |
-
from pydantic import BaseModel, Field
|
9 |
-
from tempfile import NamedTemporaryFile
|
10 |
-
from langchain_community.vectorstores import FAISS
|
11 |
-
from langchain_community.document_loaders import PyPDFLoader
|
12 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
-
from llama_parse import LlamaParse
|
14 |
-
from langchain_core.documents import Document
|
15 |
-
from huggingface_hub import InferenceClient
|
16 |
-
import inspect
|
17 |
-
import logging
|
18 |
-
|
19 |
-
# Set up basic configuration for logging
|
20 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
21 |
-
|
22 |
-
# Environment variables and configurations
|
23 |
-
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
24 |
-
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
25 |
-
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
|
26 |
-
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
|
27 |
-
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
|
28 |
-
|
29 |
-
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
|
30 |
-
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
|
31 |
-
|
32 |
-
MODELS = [
|
33 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
34 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
35 |
-
"@cf/meta/llama-3.1-8b-instruct"
|
36 |
-
]
|
37 |
-
|
38 |
-
# Initialize LlamaParse
|
39 |
-
llama_parser = LlamaParse(
|
40 |
-
api_key=llama_cloud_api_key,
|
41 |
-
result_type="markdown",
|
42 |
-
num_workers=4,
|
43 |
-
verbose=True,
|
44 |
-
language="en",
|
45 |
-
)
|
46 |
-
|
47 |
-
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
48 |
-
"""Loads and splits the document into pages."""
|
49 |
-
if parser == "pypdf":
|
50 |
-
loader = PyPDFLoader(file.name)
|
51 |
-
return loader.load_and_split()
|
52 |
-
elif parser == "llamaparse":
|
53 |
-
try:
|
54 |
-
documents = llama_parser.load_data(file.name)
|
55 |
-
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
|
56 |
-
except Exception as e:
|
57 |
-
print(f"Error using Llama Parse: {str(e)}")
|
58 |
-
print("Falling back to PyPDF parser")
|
59 |
-
loader = PyPDFLoader(file.name)
|
60 |
-
return loader.load_and_split()
|
61 |
-
else:
|
62 |
-
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
63 |
-
|
64 |
-
def get_embeddings():
|
65 |
-
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
66 |
-
|
67 |
-
def update_vectors(files, parser):
|
68 |
-
global uploaded_documents
|
69 |
-
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
70 |
-
|
71 |
-
if not files:
|
72 |
-
logging.warning("No files provided for update_vectors")
|
73 |
-
return "Please upload at least one PDF file.", gr.CheckboxGroup(
|
74 |
-
choices=[doc["name"] for doc in uploaded_documents],
|
75 |
-
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
76 |
-
label="Select documents to query"
|
77 |
-
)
|
78 |
-
|
79 |
-
embed = get_embeddings()
|
80 |
-
total_chunks = 0
|
81 |
-
|
82 |
-
all_data = []
|
83 |
-
for file in files:
|
84 |
-
logging.info(f"Processing file: {file.name}")
|
85 |
-
try:
|
86 |
-
data = load_document(file, parser)
|
87 |
-
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
88 |
-
all_data.extend(data)
|
89 |
-
total_chunks += len(data)
|
90 |
-
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
91 |
-
uploaded_documents.append({"name": file.name, "selected": True})
|
92 |
-
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
93 |
-
else:
|
94 |
-
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
95 |
-
except Exception as e:
|
96 |
-
logging.error(f"Error processing file {file.name}: {str(e)}")
|
97 |
-
|
98 |
-
logging.info(f"Total chunks processed: {total_chunks}")
|
99 |
-
|
100 |
-
if os.path.exists("faiss_database"):
|
101 |
-
logging.info("Updating existing FAISS database")
|
102 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
103 |
-
database.add_documents(all_data)
|
104 |
-
else:
|
105 |
-
logging.info("Creating new FAISS database")
|
106 |
-
database = FAISS.from_documents(all_data, embed)
|
107 |
-
|
108 |
-
database.save_local("faiss_database")
|
109 |
-
logging.info("FAISS database saved")
|
110 |
-
|
111 |
-
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
|
112 |
-
choices=[doc["name"] for doc in uploaded_documents],
|
113 |
-
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
114 |
-
label="Select documents to query"
|
115 |
-
)
|
116 |
-
|
117 |
-
def duckduckgo_search(query):
|
118 |
-
with DDGS() as ddgs:
|
119 |
-
results = ddgs.text(query, max_results=5)
|
120 |
-
return results
|
121 |
-
|
122 |
-
class CitingSources(BaseModel):
|
123 |
-
sources: List[str] = Field(
|
124 |
-
...,
|
125 |
-
description="List of sources to cite. Should be an URL of the source."
|
126 |
-
)
|
127 |
-
|
128 |
-
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
129 |
-
headers = {
|
130 |
-
"Authorization": f"Bearer {API_TOKEN}",
|
131 |
-
"Content-Type": "application/json"
|
132 |
-
}
|
133 |
-
model = "@cf/meta/llama-3.1-8b-instruct"
|
134 |
-
|
135 |
-
if search_type == "pdf":
|
136 |
-
instruction = f"""Using the following context from the PDF documents:
|
137 |
-
{context}
|
138 |
-
Write a detailed and complete response that answers the following user question: '{query}'"""
|
139 |
-
else: # web search
|
140 |
-
instruction = f"""Using the following context:
|
141 |
-
{context}
|
142 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
143 |
-
After writing the document, please provide a list of sources used in your response."""
|
144 |
-
|
145 |
-
inputs = [
|
146 |
-
{"role": "system", "content": instruction},
|
147 |
-
{"role": "user", "content": query}
|
148 |
-
]
|
149 |
-
|
150 |
-
payload = {
|
151 |
-
"messages": inputs,
|
152 |
-
"stream": True,
|
153 |
-
"temperature": temperature
|
154 |
-
}
|
155 |
-
|
156 |
-
full_response = ""
|
157 |
-
for i in range(num_calls):
|
158 |
-
try:
|
159 |
-
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
|
160 |
-
if response.status_code == 200:
|
161 |
-
for line in response.iter_lines():
|
162 |
-
if line:
|
163 |
-
try:
|
164 |
-
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
|
165 |
-
if 'response' in json_response:
|
166 |
-
chunk = json_response['response']
|
167 |
-
full_response += chunk
|
168 |
-
yield full_response
|
169 |
-
except (json.JSONDecodeError, IndexError) as e:
|
170 |
-
logging.error(f"Error parsing streaming response: {str(e)}")
|
171 |
-
continue
|
172 |
-
else:
|
173 |
-
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
|
174 |
-
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
|
175 |
-
except Exception as e:
|
176 |
-
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
|
177 |
-
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
|
178 |
-
|
179 |
-
if not full_response:
|
180 |
-
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
181 |
-
|
182 |
-
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
183 |
-
search_results = duckduckgo_search(query)
|
184 |
-
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
185 |
-
for result in search_results if 'body' in result)
|
186 |
-
|
187 |
-
prompt = f"""Using the following context:
|
188 |
-
{context}
|
189 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
190 |
-
After writing the document, please provide a list of sources used in your response."""
|
191 |
-
|
192 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
193 |
-
# Use Cloudflare API
|
194 |
-
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
195 |
-
yield response, "" # Yield streaming response without sources
|
196 |
-
else:
|
197 |
-
# Use Hugging Face API
|
198 |
-
client = InferenceClient(model, token=huggingface_token)
|
199 |
-
|
200 |
-
main_content = ""
|
201 |
-
for i in range(num_calls):
|
202 |
-
for message in client.chat_completion(
|
203 |
-
messages=[{"role": "user", "content": prompt}],
|
204 |
-
max_tokens=1000,
|
205 |
-
temperature=temperature,
|
206 |
-
stream=True,
|
207 |
-
):
|
208 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
209 |
-
chunk = message.choices[0].delta.content
|
210 |
-
main_content += chunk
|
211 |
-
yield main_content, "" # Yield partial main content without sources
|
212 |
-
|
213 |
-
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
214 |
-
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
215 |
-
|
216 |
-
embed = get_embeddings()
|
217 |
-
if os.path.exists("faiss_database"):
|
218 |
-
logging.info("Loading FAISS database")
|
219 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
220 |
-
else:
|
221 |
-
logging.warning("No FAISS database found")
|
222 |
-
yield "No documents available. Please upload PDF documents to answer questions."
|
223 |
-
return
|
224 |
-
|
225 |
-
retriever = database.as_retriever()
|
226 |
-
logging.info(f"Retrieving relevant documents for query: {query}")
|
227 |
-
relevant_docs = retriever.get_relevant_documents(query)
|
228 |
-
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
229 |
-
|
230 |
-
# Filter relevant_docs based on selected documents
|
231 |
-
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
232 |
-
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
233 |
-
|
234 |
-
if not filtered_docs:
|
235 |
-
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
|
236 |
-
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
237 |
-
return
|
238 |
-
|
239 |
-
for doc in filtered_docs:
|
240 |
-
logging.info(f"Document source: {doc.metadata['source']}")
|
241 |
-
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
242 |
-
|
243 |
-
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
244 |
-
logging.info(f"Total context length: {len(context_str)}")
|
245 |
-
|
246 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
247 |
-
logging.info("Using Cloudflare API")
|
248 |
-
# Use Cloudflare API with the retrieved context
|
249 |
-
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
250 |
-
yield response
|
251 |
-
else:
|
252 |
-
logging.info("Using Hugging Face API")
|
253 |
-
# Use Hugging Face API
|
254 |
-
prompt = f"""Using the following context from the PDF documents:
|
255 |
-
{context_str}
|
256 |
-
Write a detailed and complete response that answers the following user question: '{query}'"""
|
257 |
-
|
258 |
-
client = InferenceClient(model, token=huggingface_token)
|
259 |
-
|
260 |
-
response = ""
|
261 |
-
for i in range(num_calls):
|
262 |
-
logging.info(f"API call {i+1}/{num_calls}")
|
263 |
-
for message in client.chat_completion(
|
264 |
-
messages=[{"role": "user", "content": prompt}],
|
265 |
-
max_tokens=1000,
|
266 |
-
temperature=temperature,
|
267 |
-
stream=True,
|
268 |
-
):
|
269 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
270 |
-
chunk = message.choices[0].delta.content
|
271 |
-
response += chunk
|
272 |
-
yield response # Yield partial response
|
273 |
-
|
274 |
-
logging.info("Finished generating response")
|
275 |
-
|
276 |
-
def continue_response(last_response, context, query, model, temperature):
|
277 |
-
prompt = f"""Using the following context and partial response:
|
278 |
-
|
279 |
-
Context:
|
280 |
-
{context}
|
281 |
-
|
282 |
-
Partial Response:
|
283 |
-
{last_response}
|
284 |
-
|
285 |
-
Continue the response to fully answer the query: '{query}'
|
286 |
-
Make sure the continuation flows smoothly from the previous part."""
|
287 |
-
|
288 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
289 |
-
return get_response_from_cloudflare(prompt="", context=context, query=prompt, num_calls=1, temperature=temperature, search_type="pdf")
|
290 |
-
else:
|
291 |
-
client = InferenceClient(model, token=huggingface_token)
|
292 |
-
for message in client.chat_completion(
|
293 |
-
messages=[{"role": "user", "content": prompt}],
|
294 |
-
max_tokens=1000,
|
295 |
-
temperature=temperature,
|
296 |
-
stream=True,
|
297 |
-
):
|
298 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
299 |
-
yield message.choices[0].delta.content
|
300 |
-
|
301 |
-
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls, selected_docs):
|
302 |
-
if not message.strip():
|
303 |
-
return "", history
|
304 |
-
|
305 |
-
history = history + [(message, "")]
|
306 |
-
|
307 |
-
try:
|
308 |
-
last_response = ""
|
309 |
-
for response in respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
310 |
-
last_response = response
|
311 |
-
history[-1] = (message, response)
|
312 |
-
yield history
|
313 |
-
|
314 |
-
# Check if the response seems truncated
|
315 |
-
if not last_response.strip().endswith((".", "!", "?")):
|
316 |
-
history.append((None, "Response may be incomplete. Type 'continue' to generate more."))
|
317 |
-
yield history
|
318 |
-
except gr.CancelledError:
|
319 |
-
yield history
|
320 |
-
except Exception as e:
|
321 |
-
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
322 |
-
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
323 |
-
yield history
|
324 |
-
|
325 |
-
def continue_generation(history, use_web_search, model, temperature, selected_docs):
|
326 |
-
if not history:
|
327 |
-
return history, gr.Button.update(visible=False)
|
328 |
-
|
329 |
-
last_message = history[-1][0]
|
330 |
-
last_response = history[-1][1]
|
331 |
-
|
332 |
-
if use_web_search:
|
333 |
-
search_results = duckduckgo_search(last_message)
|
334 |
-
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
335 |
-
for result in search_results if 'body' in result)
|
336 |
-
else:
|
337 |
-
embed = get_embeddings()
|
338 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
339 |
-
retriever = database.as_retriever()
|
340 |
-
relevant_docs = retriever.get_relevant_documents(last_message)
|
341 |
-
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
342 |
-
context = "\n".join([doc.page_content for doc in filtered_docs])
|
343 |
-
|
344 |
-
continuation = ""
|
345 |
-
for chunk in continue_response(last_response, context, last_message, model, temperature):
|
346 |
-
continuation += chunk
|
347 |
-
history[-1] = (last_message, last_response + continuation)
|
348 |
-
yield history, gr.Button.update(visible=True)
|
349 |
-
|
350 |
-
if not (last_response + continuation).strip().endswith((".", "!", "?")):
|
351 |
-
yield history, gr.Button.update(visible=True, text="Continue Generation")
|
352 |
-
else:
|
353 |
-
yield history, gr.Button.update(visible=False)
|
354 |
-
|
355 |
-
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
356 |
-
logging.info(f"User Query: {message}")
|
357 |
-
logging.info(f"Model Used: {model}")
|
358 |
-
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
359 |
-
logging.info(f"Selected Documents: {selected_docs}")
|
360 |
-
|
361 |
-
# Check if the user wants to continue the previous response
|
362 |
-
if message.strip().lower() == "continue" and history:
|
363 |
-
last_message = history[-2][0] # Get the last user message
|
364 |
-
last_response = history[-2][1] # Get the last bot response
|
365 |
-
context = get_context(last_message, use_web_search, selected_docs)
|
366 |
-
for continuation in continue_response(last_response, context, last_message, model, temperature):
|
367 |
-
yield last_response + continuation
|
368 |
-
else:
|
369 |
-
try:
|
370 |
-
if use_web_search:
|
371 |
-
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
372 |
-
response = f"{main_content}\n\n{sources}"
|
373 |
-
first_line = response.split('\n')[0] if response else ''
|
374 |
-
logging.info(f"Generated Response (first line): {first_line}")
|
375 |
-
yield response
|
376 |
-
else:
|
377 |
-
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
378 |
-
first_line = partial_response.split('\n')[0] if partial_response else ''
|
379 |
-
logging.info(f"Generated Response (first line): {first_line}")
|
380 |
-
yield partial_response
|
381 |
-
except Exception as e:
|
382 |
-
logging.error(f"Error with {model}: {str(e)}")
|
383 |
-
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
384 |
-
logging.info("Falling back to Mistral model due to Phi-3 error")
|
385 |
-
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
386 |
-
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
387 |
-
else:
|
388 |
-
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
389 |
-
|
390 |
-
def get_context(message, use_web_search, selected_docs):
|
391 |
-
if use_web_search:
|
392 |
-
search_results = duckduckgo_search(message)
|
393 |
-
return "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
394 |
-
for result in search_results if 'body' in result)
|
395 |
-
else:
|
396 |
-
embed = get_embeddings()
|
397 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
398 |
-
retriever = database.as_retriever()
|
399 |
-
relevant_docs = retriever.get_relevant_documents(message)
|
400 |
-
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
401 |
-
return "\n".join([doc.page_content for doc in filtered_docs])
|
402 |
-
|
403 |
-
|
404 |
-
def vote(data: gr.LikeData):
|
405 |
-
if data.liked:
|
406 |
-
print(f"You upvoted this response: {data.value}")
|
407 |
-
else:
|
408 |
-
print(f"You downvoted this response: {data.value}")
|
409 |
-
|
410 |
-
css = """
|
411 |
-
/* Add your custom CSS here */
|
412 |
-
"""
|
413 |
-
|
414 |
-
uploaded_documents = []
|
415 |
-
|
416 |
-
def display_documents():
|
417 |
-
return gr.CheckboxGroup(
|
418 |
-
choices=[doc["name"] for doc in uploaded_documents],
|
419 |
-
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
420 |
-
label="Select documents to query"
|
421 |
-
)
|
422 |
-
|
423 |
-
# Define the checkbox outside the demo block
|
424 |
-
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
425 |
-
|
426 |
-
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
427 |
-
|
428 |
demo = gr.ChatInterface(
|
429 |
-
|
430 |
additional_inputs=[
|
431 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
|
432 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
@@ -435,7 +8,7 @@ demo = gr.ChatInterface(
|
|
435 |
document_selector # Add the document selector to the chat interface
|
436 |
],
|
437 |
title="AI-powered Web Search and PDF Chat Assistant",
|
438 |
-
description="Chat with your PDFs or use web search to answer questions.
|
439 |
theme=gr.themes.Soft(
|
440 |
primary_hue="orange",
|
441 |
secondary_hue="amber",
|
@@ -467,6 +40,7 @@ demo = gr.ChatInterface(
|
|
467 |
# Add file upload functionality
|
468 |
with demo:
|
469 |
gr.Markdown("## Upload PDF Documents")
|
|
|
470 |
with gr.Row():
|
471 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
472 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
@@ -489,7 +63,6 @@ with demo:
|
|
489 |
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
490 |
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
491 |
7. Use the provided examples or ask your own questions.
|
492 |
-
8. If a response seems incomplete, type 'continue' to generate more.
|
493 |
"""
|
494 |
)
|
495 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
demo = gr.ChatInterface(
|
2 |
+
respond,
|
3 |
additional_inputs=[
|
4 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
|
5 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
|
|
8 |
document_selector # Add the document selector to the chat interface
|
9 |
],
|
10 |
title="AI-powered Web Search and PDF Chat Assistant",
|
11 |
+
description="Chat with your PDFs or use web search to answer questions.",
|
12 |
theme=gr.themes.Soft(
|
13 |
primary_hue="orange",
|
14 |
secondary_hue="amber",
|
|
|
40 |
# Add file upload functionality
|
41 |
with demo:
|
42 |
gr.Markdown("## Upload PDF Documents")
|
43 |
+
|
44 |
with gr.Row():
|
45 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
46 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
|
|
63 |
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
64 |
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
65 |
7. Use the provided examples or ask your own questions.
|
|
|
66 |
"""
|
67 |
)
|
68 |
|