File size: 10,582 Bytes
63d903a e45d4fc 0b607fb 63d903a 9b9a599 e45d4fc a7533b2 bd71ef9 a7533b2 a6abb8f 2594602 781b94b 28ed44f a7533b2 b4dffd4 9b9a599 b4dffd4 9b9a599 63d903a 9b9a599 bd71ef9 5857237 bd71ef9 5857237 4e4b34e 9b9a599 bd71ef9 4e4b34e bd71ef9 5857237 bd71ef9 9b9a599 bd71ef9 9b9a599 5857237 a6abb8f 9b9a599 5857237 9b9a599 4e4b34e 9b9a599 149b538 9b9a599 a6abb8f 9b9a599 e45d4fc d1372f5 b4dffd4 63d903a b4dffd4 149b538 b4dffd4 a6c785f d7187db e45d4fc 5857237 e45d4fc d7187db 149b538 e45d4fc 570f979 b4dffd4 e45d4fc b4dffd4 5857237 b4dffd4 e45d4fc 685135d 570f979 b4dffd4 e45d4fc b4dffd4 e45d4fc 149b538 204d06f 978efd2 204d06f b4dffd4 2594602 f9f0a5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import json
import logging
import gradio as gr
from duckduckgo_search import DDGS
from typing import List, Dict
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from typing import List, Dict
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"duckduckgo/gpt-4o-mini",
"duckduckgo/claude-3-haiku",
"duckduckgo/llama-3.1-70b",
"duckduckgo/mixtral-8x7b"
]
class ConversationManager:
def __init__(self):
self.history = []
self.current_context = None
def add_interaction(self, query, response):
self.history.append((query, response))
self.current_context = f"Previous query: {query}\nPrevious response summary: {response[:200]}..."
def get_context(self):
return self.current_context
conversation_manager = ConversationManager()
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
def duckduckgo_search(query: str, max_results: int = 10) -> List[Dict[str, str]]:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
return results
def get_web_search_results(query: str, model: str, num_calls: int = 3, temperature: float = 0.2, max_results: int = 10, search_method: str = "DDGS.chat") -> Dict[str, any]:
try:
# Perform web search
if search_method == "DDGS.text":
search_results = duckduckgo_search(query, max_results)
else: # Default to DDGS.chat
with DDGS() as ddgs:
search_results = list(ddgs.text(query, max_results=max_results))
if not search_results:
return {"error": f"No results found for query: {query}"}
# Create embeddings for search results
embedder = SentenceTransformer('all-MiniLM-L6-v2')
web_search_vectors = embedder.encode([result['body'] for result in search_results])
# Retrieve relevant documents
query_vector = embedder.encode([query])
similarities = cosine_similarity(query_vector, web_search_vectors)[0]
top_indices = np.argsort(similarities)[-5:][::-1]
relevant_docs = [search_results[i] for i in top_indices]
# Prepare context
context = "\n".join([f"Title: {doc['title']}\nContent: {doc['body']}" for doc in relevant_docs])
# Prepare prompt
prompt = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
# Generate response based on the selected model
if model == "@cf/meta/llama-3.1-8b-instruct":
# Use Cloudflare API (placeholder, as the actual implementation is not provided)
response = get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web")
else:
# Use Hugging Face API
client = InferenceClient(model, token=huggingface_token)
response = ""
for _ in range(num_calls):
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=10000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
response += message.choices[0].delta.content
return {
"query": query,
"search_results": search_results,
"relevant_docs": relevant_docs,
"response": response
}
except Exception as e:
return {"error": f"An error occurred during web search and processing: {str(e)}"}
def rephrase_query(original_query: str, conversation_manager: ConversationManager) -> str:
context = conversation_manager.get_context()
if context:
prompt = f"""You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual.
3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context.
4. Provide ONLY the rephrased query without any additional explanation or reasoning.
Context: {context}
New query: {original_query}
Rephrased query:"""
response = DDGS().chat(prompt, model="llama-3.1-70b")
rephrased_query = response.split('\n')[0].strip()
return rephrased_query
return original_query
def summarize_web_results(query: str, search_results: List[Dict[str, str]], conversation_manager: ConversationManager) -> str:
try:
context = conversation_manager.get_context()
search_context = "\n\n".join([f"Title: {result['title']}\nContent: {result['body']}" for result in search_results])
prompt = f"""You are a highly intelligent & expert analyst and your job is to skillfully articulate the web search results about '{query}' and considering the context: {context},
You have to create a comprehensive news summary FOCUSING on the context provided to you.
Include key facts, relevant statistics, and expert opinions if available.
Ensure the article is well-structured with an introduction, main body, and conclusion, IF NECESSARY.
Address the query in the context of the ongoing conversation IF APPLICABLE.
Cite sources directly within the generated text and not at the end of the generated text, integrating URLs where appropriate to support the information provided:
{search_context}
Article:"""
summary = DDGS().chat(prompt, model="llama-3.1-70b")
return summary
except Exception as e:
return f"An error occurred during summarization: {str(e)}"
def respond(message, history, model, temperature, num_calls, use_web_search, search_method):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Use Web Search: {use_web_search}")
logging.info(f"Search Method: {search_method}")
if use_web_search:
original_query = message
rephrased_query = rephrase_query(message, conversation_manager)
logging.info(f"Original query: {original_query}")
logging.info(f"Rephrased query: {rephrased_query}")
final_summary = ""
for _ in range(num_calls):
search_results = get_web_search_results(rephrased_query, model, num_calls, temperature, max_results=10, search_method=search_method)
if not search_results:
final_summary += f"No search results found for the query: {rephrased_query}\n\n"
elif "error" in search_results[0]:
final_summary += search_results[0]["error"] + "\n\n"
else:
summary = summarize_web_results(rephrased_query, search_results, conversation_manager)
final_summary += summary + "\n\n"
if final_summary:
conversation_manager.add_interaction(original_query, final_summary)
yield final_summary
else:
yield "Unable to generate a response. Please try a different query."
else:
yield "Web search is not enabled. Please enable web search to use this feature."
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
def initial_conversation():
return [
(None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
"1. Make sure the 'Use Web Search' checkbox is enabled in the Additional Inputs section.\n"
"2. Ask me any question, and I'll search the web for the most relevant and up-to-date information.\n"
"3. You can adjust the model, temperature, number of API calls, and search method in the Additional Inputs section to fine-tune your results.\n\n"
"To get started, just ask me a question!")
]
# Create the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Web Search", value=True),
gr.Radio(["DDGS.chat", "DDGS.text"], label="Search Method", value="DDGS.chat")
],
title="AI-powered Web Search Assistant",
description="Ask questions and get answers from the latest web information.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
css=css,
examples=[
["What's the latest news about artificial intelligence?"],
["Summarize the current global economic situation."],
["What are the top environmental concerns right now?"],
["What are the recent breakthroughs in quantum computing?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder="Ask any question", container=False, scale=7),
chatbot = gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
value=initial_conversation()
)
)
if __name__ == "__main__":
demo.launch(share=True) |