File size: 9,889 Bytes
63d903a
e45d4fc
81c84f4
f3cc462
0b607fb
a7533b2
3890ae0
 
 
 
81c84f4
 
f3cc462
81c84f4
 
 
2594602
64581a6
81c84f4
 
64581a6
781b94b
81c84f4
 
a7533b2
b4dffd4
 
 
2d75ed4
3654925
81c84f4
 
 
b4dffd4
 
81c84f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3890ae0
 
9b9a599
3890ae0
 
81c84f4
 
 
 
 
 
 
 
3890ae0
 
f3cc462
 
 
 
 
81c84f4
 
9328d2d
 
81c84f4
 
 
 
 
3890ae0
9328d2d
 
 
 
 
 
81c84f4
9328d2d
81c84f4
e1a8672
f3cc462
 
 
 
 
bd71ef9
e1a8672
81c84f4
9b9a599
81c84f4
5860470
2d75ed4
5860470
81c84f4
 
 
e1a8672
 
81c84f4
 
 
 
 
f3cc462
81c84f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3cc462
 
2d75ed4
81c84f4
 
 
 
 
3890ae0
5860470
81c84f4
 
 
 
5860470
81c84f4
 
 
 
 
 
 
 
f3cc462
d1372f5
3890ae0
f3cc462
81c84f4
3890ae0
81c84f4
 
b4dffd4
 
149b538
 
 
 
 
 
 
 
 
b4dffd4
d9bca78
3890ae0
 
 
 
81c84f4
 
3890ae0
81c84f4
fb7ae92
3890ae0
 
ea8692a
3890ae0
8052ffa
 
3890ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204d06f
3890ae0
 
 
 
 
81c84f4
 
 
 
 
 
 
3890ae0
 
 
b4dffd4
2594602
3890ae0
f9f0a5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import logging
import json
import time
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS
from dotenv import load_dotenv
from functools import lru_cache
from tenacity import retry, stop_after_attempt, wait_fixed

# Load environment variables
load_dotenv()

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Environment variables and configurations
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
logger.info(f"Using Hugging Face token: {HUGGINGFACE_TOKEN[:4]}...{HUGGINGFACE_TOKEN[-4:] if HUGGINGFACE_TOKEN else 'Not Set'}")

MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "google/gemma-2-9b-it",
    "google/gemma-2-27b-it"
]

FALLBACK_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"

DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection. 
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential. 
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query. 
Please ensure that your response is well-structured and factual.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""

class WebSearcher:
    def __init__(self):
        self.ddgs = DDGS()

    @lru_cache(maxsize=100)
    def search(self, query, max_results=5):
        try:
            results = list(self.ddgs.text(query, max_results=max_results))
            logger.info(f"Search completed for query: {query}")
            return results
        except Exception as e:
            logger.error(f"Error during DuckDuckGo search: {str(e)}")
            return []

@lru_cache(maxsize=1)
def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")

def create_web_search_vectors(search_results):
    embed = get_embeddings()
    documents = [
        Document(
            page_content=f"{result['title']}\n{result['body']}\nSource: {result['href']}",
            metadata={"source": result['href']}
        )
        for result in search_results if 'body' in result
    ]
    logger.info(f"Created vectors for {len(documents)} search results.")
    return FAISS.from_documents(documents, embed)

@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def make_api_call(client, api_params):
    return client.chat_completion(**api_params)

def get_response_with_search(query, system_prompt, model, use_embeddings, history, num_calls=3, temperature=0.2):
    searcher = WebSearcher()
    search_results = searcher.search(query)
    
    if not search_results:
        logger.warning(f"No web search results found for query: {query}")
        return "No web search results available. Please try again.", ""

    sources = [result['href'] for result in search_results if 'href' in result]
    source_list_str = "\n".join(sources)

    if use_embeddings:
        web_search_database = create_web_search_vectors(search_results)
        retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
        relevant_docs = retriever.get_relevant_documents(query)
        context = "\n".join([doc.page_content for doc in relevant_docs])
    else:
        context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])

    logger.info(f"Context created for query: {query}")

    chat_history = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history])
    user_message = f"""Chat history:
{chat_history}

Using the following context from web search results:
{context}

Write a detailed and complete research document that fulfills the following user request: '{query}'."""

    client = InferenceClient(model, token=HUGGINGFACE_TOKEN)
    full_response = ""
    try:
        for _ in range(num_calls):
            api_params = {
                "messages": [
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": user_message}
                ],
                "max_tokens": 3000,
                "temperature": temperature,
                "top_p": 0.8,
            }
            logger.info(f"Sending request to API with params: {json.dumps(api_params, indent=2, default=str)}")
            response = make_api_call(client, api_params)
            logger.info(f"Raw response from model: {response}")

            if isinstance(response, dict):
                if 'generated_text' in response:
                    full_response += response['generated_text']
                elif 'choices' in response and len(response['choices']) > 0:
                    if isinstance(response['choices'][0], dict) and 'message' in response['choices'][0]:
                        full_response += response['choices'][0]['message'].get('content', '')
                    elif isinstance(response['choices'][0], str):
                        full_response += response['choices'][0]
            elif hasattr(response, 'generated_text'):
                full_response += response.generated_text
            elif hasattr(response, 'content'):
                full_response += response.content
            else:
                logger.error(f"Unexpected response format from the model: {type(response)}")
                return "Unexpected response format from the model. Please try again.", ""
            
            time.sleep(1)  # Add a 1-second delay between API calls
    except Exception as e:
        logger.error(f"Error in get_response_with_search: {str(e)}")
        logger.info(f"Attempting fallback to {FALLBACK_MODEL}")
        client = InferenceClient(FALLBACK_MODEL, token=HUGGINGFACE_TOKEN)
        # Retry with fallback model (you can implement retry logic here)
        return f"An error occurred while processing your request: {str(e)}", ""

    if not full_response:
        logger.warning("No response generated from the model")
        return "No response generated from the model.", ""
    else:
        return f"{full_response}\n\nSources:\n{source_list_str}", ""

def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
    logger.info(f"Respond function called with message: {message}")
    logger.info(f"User Query: {message}")
    logger.info(f"Model Used: {model}")
    logger.info(f"Temperature: {temperature}")
    logger.info(f"Number of API Calls: {num_calls}")
    logger.info(f"Use Embeddings: {use_embeddings}")
    logger.info(f"System Prompt: {system_prompt}")
    logger.info(f"History: {history}")

    try:
        main_content, sources = get_response_with_search(message, system_prompt, model, use_embeddings, history, num_calls=num_calls, temperature=temperature)
        return main_content
    except Exception as e:
        logger.error(f"Error in respond function: {str(e)}")
        return f"An error occurred: {str(e)}"

css = """
/* Fine-tune chatbox size */
.chatbot-container {
    height: 600px !important;
    width: 100% !important;
}
.chatbot-container > div {
    height: 100%;
    width: 100%;
}
"""

def create_gradio_interface():
    custom_placeholder = "Enter your question here for web search."

    demo = gr.ChatInterface(
        fn=respond,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
        additional_inputs=[
            gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
            gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
            gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
            gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
            gr.Checkbox(label="Use Embeddings", value=False),
        ],
        title="AI-powered Web Search Assistant",
        description="Use web search to answer questions or generate summaries.",
        theme=gr.Theme.from_hub("allenai/gradio-theme"),
        css=css,
        examples=[
            ["What are the latest developments in artificial intelligence?"],
            ["Explain the concept of quantum computing."],
            ["What are the environmental impacts of renewable energy?"]
        ],
        cache_examples=False,
        analytics_enabled=False,
        textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
        chatbot=gr.Chatbot(
            show_copy_button=True,
            likeable=True,
            layout="bubble",
            height=400,
        )
    )

    with demo:
        gr.Markdown("""
        ## How to use
        1. Enter your question in the chat interface.
        2. Optionally, modify the System Prompt to guide the AI's behavior.
        3. Select the model you want to use from the dropdown.
        4. Adjust the Temperature to control the randomness of the response.
        5. Set the Number of API Calls to determine how many times the model will be queried.
        6. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
        7. Press Enter or click the submit button to get your answer.
        8. Use the provided examples or ask your own questions.
        """)

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(share=True)