File size: 9,889 Bytes
63d903a e45d4fc 81c84f4 f3cc462 0b607fb a7533b2 3890ae0 81c84f4 f3cc462 81c84f4 2594602 64581a6 81c84f4 64581a6 781b94b 81c84f4 a7533b2 b4dffd4 2d75ed4 3654925 81c84f4 b4dffd4 81c84f4 3890ae0 9b9a599 3890ae0 81c84f4 3890ae0 f3cc462 81c84f4 9328d2d 81c84f4 3890ae0 9328d2d 81c84f4 9328d2d 81c84f4 e1a8672 f3cc462 bd71ef9 e1a8672 81c84f4 9b9a599 81c84f4 5860470 2d75ed4 5860470 81c84f4 e1a8672 81c84f4 f3cc462 81c84f4 f3cc462 2d75ed4 81c84f4 3890ae0 5860470 81c84f4 5860470 81c84f4 f3cc462 d1372f5 3890ae0 f3cc462 81c84f4 3890ae0 81c84f4 b4dffd4 149b538 b4dffd4 d9bca78 3890ae0 81c84f4 3890ae0 81c84f4 fb7ae92 3890ae0 ea8692a 3890ae0 8052ffa 3890ae0 204d06f 3890ae0 81c84f4 3890ae0 b4dffd4 2594602 3890ae0 f9f0a5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import logging
import json
import time
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS
from dotenv import load_dotenv
from functools import lru_cache
from tenacity import retry, stop_after_attempt, wait_fixed
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Environment variables and configurations
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
logger.info(f"Using Hugging Face token: {HUGGINGFACE_TOKEN[:4]}...{HUGGINGFACE_TOKEN[-4:] if HUGGINGFACE_TOKEN else 'Not Set'}")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"google/gemma-2-9b-it",
"google/gemma-2-27b-it"
]
FALLBACK_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured and factual.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
class WebSearcher:
def __init__(self):
self.ddgs = DDGS()
@lru_cache(maxsize=100)
def search(self, query, max_results=5):
try:
results = list(self.ddgs.text(query, max_results=max_results))
logger.info(f"Search completed for query: {query}")
return results
except Exception as e:
logger.error(f"Error during DuckDuckGo search: {str(e)}")
return []
@lru_cache(maxsize=1)
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = [
Document(
page_content=f"{result['title']}\n{result['body']}\nSource: {result['href']}",
metadata={"source": result['href']}
)
for result in search_results if 'body' in result
]
logger.info(f"Created vectors for {len(documents)} search results.")
return FAISS.from_documents(documents, embed)
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def make_api_call(client, api_params):
return client.chat_completion(**api_params)
def get_response_with_search(query, system_prompt, model, use_embeddings, history, num_calls=3, temperature=0.2):
searcher = WebSearcher()
search_results = searcher.search(query)
if not search_results:
logger.warning(f"No web search results found for query: {query}")
return "No web search results available. Please try again.", ""
sources = [result['href'] for result in search_results if 'href' in result]
source_list_str = "\n".join(sources)
if use_embeddings:
web_search_database = create_web_search_vectors(search_results)
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
else:
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
logger.info(f"Context created for query: {query}")
chat_history = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history])
user_message = f"""Chat history:
{chat_history}
Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
client = InferenceClient(model, token=HUGGINGFACE_TOKEN)
full_response = ""
try:
for _ in range(num_calls):
api_params = {
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
],
"max_tokens": 3000,
"temperature": temperature,
"top_p": 0.8,
}
logger.info(f"Sending request to API with params: {json.dumps(api_params, indent=2, default=str)}")
response = make_api_call(client, api_params)
logger.info(f"Raw response from model: {response}")
if isinstance(response, dict):
if 'generated_text' in response:
full_response += response['generated_text']
elif 'choices' in response and len(response['choices']) > 0:
if isinstance(response['choices'][0], dict) and 'message' in response['choices'][0]:
full_response += response['choices'][0]['message'].get('content', '')
elif isinstance(response['choices'][0], str):
full_response += response['choices'][0]
elif hasattr(response, 'generated_text'):
full_response += response.generated_text
elif hasattr(response, 'content'):
full_response += response.content
else:
logger.error(f"Unexpected response format from the model: {type(response)}")
return "Unexpected response format from the model. Please try again.", ""
time.sleep(1) # Add a 1-second delay between API calls
except Exception as e:
logger.error(f"Error in get_response_with_search: {str(e)}")
logger.info(f"Attempting fallback to {FALLBACK_MODEL}")
client = InferenceClient(FALLBACK_MODEL, token=HUGGINGFACE_TOKEN)
# Retry with fallback model (you can implement retry logic here)
return f"An error occurred while processing your request: {str(e)}", ""
if not full_response:
logger.warning("No response generated from the model")
return "No response generated from the model.", ""
else:
return f"{full_response}\n\nSources:\n{source_list_str}", ""
def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
logger.info(f"Respond function called with message: {message}")
logger.info(f"User Query: {message}")
logger.info(f"Model Used: {model}")
logger.info(f"Temperature: {temperature}")
logger.info(f"Number of API Calls: {num_calls}")
logger.info(f"Use Embeddings: {use_embeddings}")
logger.info(f"System Prompt: {system_prompt}")
logger.info(f"History: {history}")
try:
main_content, sources = get_response_with_search(message, system_prompt, model, use_embeddings, history, num_calls=num_calls, temperature=temperature)
return main_content
except Exception as e:
logger.error(f"Error in respond function: {str(e)}")
return f"An error occurred: {str(e)}"
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
def create_gradio_interface():
custom_placeholder = "Enter your question here for web search."
demo = gr.ChatInterface(
fn=respond,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Embeddings", value=False),
],
title="AI-powered Web Search Assistant",
description="Use web search to answer questions or generate summaries.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Explain the concept of quantum computing."],
["What are the environmental impacts of renewable energy?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
)
)
with demo:
gr.Markdown("""
## How to use
1. Enter your question in the chat interface.
2. Optionally, modify the System Prompt to guide the AI's behavior.
3. Select the model you want to use from the dropdown.
4. Adjust the Temperature to control the randomness of the response.
5. Set the Number of API Calls to determine how many times the model will be queried.
6. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
7. Press Enter or click the submit button to get your answer.
8. Use the provided examples or ask your own questions.
""")
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True) |