|
import os |
|
import logging |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
from llama_cpp_agent.providers import LlamaCppPythonProvider |
|
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType |
|
from llama_cpp_agent.chat_history import BasicChatHistory |
|
from llama_cpp_agent.chat_history.messages import Roles |
|
from llama_cpp_agent.llm_output_settings import ( |
|
LlmStructuredOutputSettings, |
|
LlmStructuredOutputType, |
|
) |
|
from llama_cpp_agent.tools import WebSearchTool |
|
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt |
|
from pydantic import BaseModel, Field |
|
from trafilatura import fetch_url, extract |
|
import json |
|
from datetime import datetime, timezone |
|
from typing import List |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFaceHub |
|
|
|
llm = None |
|
llm_model = None |
|
|
|
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
|
|
examples = [ |
|
["latest news about Yann LeCun"], |
|
["Latest news site:github.blog"], |
|
["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"], |
|
["filetype:pdf intitle:python"] |
|
] |
|
|
|
def get_context_by_model(model_name): |
|
model_context_limits = { |
|
"Mistral-7B-Instruct-v0.3": 32768, |
|
} |
|
return model_context_limits.get(model_name, None) |
|
|
|
def get_messages_formatter_type(model_name): |
|
model_name = model_name.lower() |
|
if "mistral" in model_name: |
|
return MessagesFormatterType.MISTRAL |
|
else: |
|
return MessagesFormatterType.CHATML |
|
|
|
def get_model(temperature, top_p, repetition_penalty): |
|
return HuggingFaceHub( |
|
repo_id="mistralai/Mistral-7B-Instruct-v0.3", |
|
model_kwargs={ |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"repetition_penalty": repetition_penalty, |
|
"max_length": 1000 |
|
}, |
|
huggingfacehub_api_token=huggingface_token |
|
) |
|
|
|
def get_server_time(): |
|
utc_time = datetime.now(timezone.utc) |
|
return utc_time.strftime("%Y-%m-%d %H:%M:%S") |
|
|
|
def get_website_content_from_url(url: str) -> str: |
|
try: |
|
downloaded = fetch_url(url) |
|
result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', url=url) |
|
if result: |
|
result = json.loads(result) |
|
return f'=========== Website Title: {result["title"]} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{result["raw_text"]}\n\n=========== Website Content End ===========\n\n' |
|
else: |
|
return "" |
|
except Exception as e: |
|
return f"An error occurred: {str(e)}" |
|
|
|
class CitingSources(BaseModel): |
|
sources: List[str] = Field( |
|
..., |
|
description="List of sources to cite. Should be an URL of the source. E.g. GitHub URL, Blogpost URL or Newsletter URL." |
|
) |
|
|
|
def write_message_to_user(): |
|
return "Please write the message to the user." |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
model, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
top_k, |
|
repeat_penalty, |
|
): |
|
global llm |
|
global llm_model |
|
chat_template = get_messages_formatter_type(model) |
|
if llm is None or llm_model != model: |
|
llm = get_model(temperature, top_p, repeat_penalty) |
|
llm_model = model |
|
provider = LlamaCppPythonProvider(llm) |
|
logging.info(f"Loaded chat examples: {chat_template}") |
|
search_tool = WebSearchTool( |
|
llm_provider=provider, |
|
message_formatter_type=chat_template, |
|
max_tokens_search_results=12000, |
|
max_tokens_per_summary=2048, |
|
) |
|
|
|
web_search_agent = LlamaCppAgent( |
|
provider, |
|
system_prompt=web_search_system_prompt, |
|
predefined_messages_formatter_type=chat_template, |
|
debug_output=True, |
|
) |
|
|
|
answer_agent = LlamaCppAgent( |
|
provider, |
|
system_prompt=research_system_prompt, |
|
predefined_messages_formatter_type=chat_template, |
|
debug_output=True, |
|
) |
|
|
|
settings = provider.get_provider_default_settings() |
|
settings.stream = False |
|
settings.temperature = temperature |
|
settings.top_k = top_k |
|
settings.top_p = top_p |
|
settings.max_tokens = max_tokens |
|
settings.repeat_penalty = repeat_penalty |
|
|
|
output_settings = LlmStructuredOutputSettings.from_functions( |
|
[search_tool.get_tool()] |
|
) |
|
|
|
messages = BasicChatHistory() |
|
|
|
for msn in history: |
|
user = {"role": Roles.user, "content": msn[0]} |
|
assistant = {"role": Roles.assistant, "content": msn[1]} |
|
messages.add_message(user) |
|
messages.add_message(assistant) |
|
|
|
result = web_search_agent.get_chat_response( |
|
message, |
|
llm_sampling_settings=settings, |
|
structured_output_settings=output_settings, |
|
add_message_to_chat_history=False, |
|
add_response_to_chat_history=False, |
|
print_output=False, |
|
) |
|
|
|
outputs = "" |
|
|
|
settings.stream = True |
|
response_text = answer_agent.get_chat_response( |
|
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" + |
|
result[0]["return_value"], |
|
role=Roles.tool, |
|
llm_sampling_settings=settings, |
|
chat_history=messages, |
|
returns_streaming_generator=True, |
|
print_output=False, |
|
) |
|
|
|
for text in response_text: |
|
outputs += text |
|
yield outputs |
|
|
|
output_settings = LlmStructuredOutputSettings.from_pydantic_models( |
|
[CitingSources], LlmStructuredOutputType.object_instance |
|
) |
|
|
|
citing_sources = answer_agent.get_chat_response( |
|
"Cite the sources you used in your response.", |
|
role=Roles.tool, |
|
llm_sampling_settings=settings, |
|
chat_history=messages, |
|
returns_streaming_generator=False, |
|
structured_output_settings=output_settings, |
|
print_output=False, |
|
) |
|
outputs += "\n\nSources:\n" |
|
outputs += "\n".join(citing_sources.sources) |
|
yield outputs |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Dropdown([ |
|
'Mistral-7B-Instruct-v0.3' |
|
], |
|
value="Mistral-7B-Instruct-v0.3", |
|
label="Model" |
|
), |
|
gr.Textbox(value=web_search_system_prompt, label="System message"), |
|
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p", |
|
), |
|
gr.Slider( |
|
minimum=0, |
|
maximum=100, |
|
value=40, |
|
step=1, |
|
label="Top-k", |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
value=1.1, |
|
step=0.1, |
|
label="Repetition penalty", |
|
), |
|
], |
|
theme=gr.themes.Soft( |
|
primary_hue="orange", |
|
secondary_hue="amber", |
|
neutral_hue="gray", |
|
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( |
|
body_background_fill_dark="#0c0505", |
|
block_background_fill_dark="#0c0505", |
|
block_border_width="1px", |
|
block_title_background_fill_dark="#1b0f0f", |
|
input_background_fill_dark="#140b0b", |
|
button_secondary_background_fill_dark="#140b0b", |
|
border_color_accent_dark="#1b0f0f", |
|
border_color_primary_dark="#1b0f0f", |
|
slider_color="#ff911a", |
|
button_primary_background_fill="#ff911a", |
|
button_primary_background_fill_dark="#ff911a", |
|
button_primary_text_color="#f9f9f9", |
|
button_primary_text_color_dark="#f9f9f9" |
|
), |
|
examples=examples, |
|
title="llama.cpp agent", |
|
) |
|
|
|
demo.queue().launch() |