Shreyas094's picture
Update app.py
76dfeb6 verified
raw
history blame
25.3 kB
import fitz # PyMuPDF
import gradio as gr
import requests
from bs4 import BeautifulSoup
import urllib.parse
import random
import os
from dotenv import load_dotenv
import shutil
import tempfile
import re
import unicodedata
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.probability import FreqDist
import nltk
from datetime import datetime, timedelta
# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
load_dotenv() # Load environment variables from .env file
# Now replace the hard-coded token with the environment variable
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
def clear_cache():
try:
# Clear Gradio cache
cache_dir = tempfile.gettempdir()
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True)
# Clear any custom cache you might have
# For example, if you're caching PDF files or search results:
if os.path.exists("output_summary.pdf"):
os.remove("output_summary.pdf")
# Add any other cache clearing operations here
print("Cache cleared successfully.")
return "Cache cleared successfully."
except Exception as e:
print(f"Error clearing cache: {e}")
return f"Error clearing cache: {e}"
PREDEFINED_QUERIES = {
"Recent Earnings": {
"query": "{company} recent quarterly earnings",
"instructions": "Provide the most recent quarterly earnings data for {company}. Include revenue, net income, loan growth, deposit growth if any, EPS and asset quality. Specify the exact quarter and year."
},
"Recent News": {
"query": "{company} recent news",
"instructions": "Summarize the most recent significant news about {company}. Focus on events that could impact the company's financial performance or stock price."
},
"Credit Rating": {
"query": "{company} current credit rating",
"instructions": "Provide the most recent credit rating for {company}. Include the rating agency, the exact rating, and the date it was issued or last confirmed."
},
"Earnings Call Transcript": {
"query": "{company} most recent earnings call transcript",
"instructions": "Summarize key points from {company}'s most recent earnings call. Include date of the call, major financial highlights, and any significant forward-looking statements."
}
}
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
# Function to extract visible text from HTML content of a webpage
def extract_text_from_webpage(html):
print("Extracting text from webpage...")
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract() # Remove scripts and styles
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
print(f"Extracted text length: {len(text)}")
return text
# Function to perform a Google search and retrieve results
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None, instructions="", days_back=365):
print(f"Searching for term: {term}")
# Calculate the date range
end_date = datetime.now()
start_date = end_date - timedelta(days=days_back)
# Format dates as strings
start_date_str = start_date.strftime("%Y-%m-%d")
end_date_str = end_date.strftime("%Y-%m-%d")
# Add the date range to the search term
search_term = f"{term} after:{start_date_str} before:{end_date_str}"
escaped_term = urllib.parse.quote_plus(search_term)
start = 0
all_results = []
with requests.Session() as session:
while len(all_results) < num_results:
print(f"Fetching search results starting from: {start}")
try:
# Choose a random user agent
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
print(f"Using User-Agent: {headers['User-Agent']}")
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": search_term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error fetching search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
print("No more results found.")
break
keywords = term.split() # Use the search term as keywords for filtering
for result in result_block:
if len(all_results) >= num_results:
break
link = result.find("a", href=True)
if link:
link = link["href"]
print(f"Found link: {link}")
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
# Summarize the webpage content
summary = summarize_webpage(link, visible_text, term, instructions)
all_results.append({"link": link, "text": summary})
except requests.exceptions.RequestException as e:
print(f"Error fetching or processing {link}: {e}")
all_results.append({"link": link, "text": None})
else:
print("No link found in result.")
all_results.append({"link": None, "text": None})
start += len(result_block)
print(f"Total results fetched: {len(all_results)}")
return all_results
def google_news_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None, days_back=30):
print(f"Searching Google News for term: {term}")
# Calculate the date range
end_date = datetime.now()
start_date = end_date - timedelta(days=days_back)
# Format dates as strings
start_date_str = start_date.strftime("%Y-%m-%d")
end_date_str = end_date.strftime("%Y-%m-%d")
# Add the date range to the search term
search_term = f"{term} after:{start_date_str} before:{end_date_str}"
escaped_term = urllib.parse.quote_plus(search_term)
start = 0
all_results = []
with requests.Session() as session:
while len(all_results) < num_results:
try:
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
print(f"Using User-Agent: {headers['User-Agent']}")
resp = session.get(
url="https://news.google.com/search",
headers=headers,
params={
"q": search_term,
"hl": lang,
"gl": "US",
"ceid": "US:en"
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error fetching search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
articles = soup.find_all("article")
for article in articles:
if len(all_results) >= num_results:
break
link_element = article.find("a", attrs={"class": "WwrzSb"}) or article.find("a", href=True)
# link_element = article.find("a", class_="WwrzSb")
if link_element:
# Google News uses relative URLs, so we need to construct the full URL
relative_link = link_element['href']
full_link = f"https://news.google.com{relative_link[1:]}" # Remove the leading '.'
title = link_element.text
try:
# Fetch the actual article
article_page = session.get(full_link, headers=headers, timeout=timeout)
article_page.raise_for_status()
article_content = extract_text_from_webpage(article_page.text)
all_results.append({"link": full_link, "title": title, "text": article_content})
except requests.exceptions.RequestException as e:
print(f"Error fetching or processing {full_link}: {e}")
all_results.append({"link": full_link, "title": title, "text": None})
else:
print("No link found in article.")
if len(articles) == 0:
print("No more results found.")
break
start += len(articles)
print(f"Total news results fetched: {len(all_results)}")
return all_results
def summarize_webpage(url, content, query, instructions, max_chars=1000):
if content is None:
return f"Unable to fetch or process content from {url}"
# Extract keywords from the query
keywords = query.split()
# Apply full preprocessing pipeline
preprocessed_text = preprocess_text(content)
preprocessed_text = remove_boilerplate(preprocessed_text)
filtered_text = keyword_filter(preprocessed_text, keywords)
summarized_text = summarize_text(filtered_text, num_sentences=5) # Adjust num_sentences as needed
if not summarized_text:
return f"No relevant content found for the query in {url}"
# Format a prompt for this specific webpage
webpage_prompt = f"""
Instructions: {instructions}
Query: {query}
URL: {url}
Filtered and summarized webpage content:
{summarized_text}
Based on the above filtered and summarized content, provide a concise summary that's directly relevant to the query. Focus on specific data, facts, or insights mentioned. Keep the summary under 200 words.
Summary:
"""
# Generate summary using the AI model
summary = generate_text(webpage_prompt, temperature=0.3, repetition_penalty=1.2, top_p=0.9)
# Truncate if necessary
if summary and len(summary) > max_chars:
summary = summary[:max_chars] + "..."
return summary if summary else f"Unable to generate summary for {url}"
def preprocess_text(text):
if text is None:
return "" # Return an empty string if input is None
# Remove HTML tags
text = BeautifulSoup(str(text), "html.parser").get_text()
# Remove URLs
text = re.sub(r'http\S+|www.\S+', '', text)
# Remove special characters and digits
text = re.sub(r'[^a-zA-Z\s]', '', text)
# Remove extra whitespace
text = ' '.join(text.split())
# Convert to lowercase
text = text.lower()
return text
def remove_boilerplate(text):
# List of common boilerplate phrases to remove
boilerplate = [
"all rights reserved",
"terms of service",
"privacy policy",
"cookie policy",
"copyright ©",
"follow us on social media"
]
for phrase in boilerplate:
text = text.replace(phrase, '')
return text
def keyword_filter(text, keywords):
sentences = sent_tokenize(text)
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)]
return ' '.join(filtered_sentences)
def summarize_text(text, num_sentences=3):
# Tokenize the text into words
words = word_tokenize(text)
# Remove stopwords
stop_words = set(stopwords.words('english'))
words = [word for word in words if word.lower() not in stop_words]
# Calculate word frequencies
freq_dist = FreqDist(words)
# Score sentences based on word frequencies
sentences = sent_tokenize(text)
sentence_scores = {}
for sentence in sentences:
for word in word_tokenize(sentence.lower()):
if word in freq_dist:
if sentence not in sentence_scores:
sentence_scores[sentence] = freq_dist[word]
else:
sentence_scores[sentence] += freq_dist[word]
# Get the top N sentences with highest scores
summary_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:num_sentences]
# Sort the selected sentences in the order they appear in the original text
summary_sentences = sorted(summary_sentences, key=text.index)
return ' '.join(summary_sentences)
def preprocess_web_content(content, keywords):
# Apply basic preprocessing
preprocessed_text = preprocess_text(content)
# Remove boilerplate
preprocessed_text = remove_boilerplate(preprocessed_text)
# Apply keyword filtering
filtered_text = keyword_filter(preprocessed_text, keywords)
# Summarize the text
summarized_text = summarize_text(filtered_text)
return summarized_text
# Function to format the prompt for the Hugging Face API
def format_prompt(query, search_results, instructions):
formatted_results = ""
for result in search_results:
link = result["link"]
summary = result["text"]
if link and summary:
formatted_results += f"URL: {link}\nSummary: {summary}\n{'-' * 80}\n"
else:
formatted_results += "No relevant information found.\n" + '-' * 80 + '\n'
prompt = f"""Instructions: {instructions}
User Query: {query}
Summarized Web Search Results:
{formatted_results}
Based on the above summarized information from multiple sources, provide a comprehensive and factual response to the user's query. Include specific dates, numbers, and sources where available. If information is conflicting or unclear, mention this in your response. Do not make assumptions or provide information that is not supported by the summaries.
Assistant:"""
return prompt
# Function to generate text using Hugging Face API
def generate_text(input_text, temperature=0.3, repetition_penalty=1.2, top_p=0.9):
print("Generating text using Hugging Face API...")
endpoint = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}",
"Content-Type": "application/json"
}
data = {
"inputs": input_text,
"parameters": {
"max_new_tokens": 1000, # Reduced to focus on more concise answers
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"top_p": top_p,
"do_sample": True
}
}
try:
response = requests.post(endpoint, headers=headers, json=data)
response.raise_for_status()
# Check if response is JSON
try:
json_data = response.json()
except ValueError:
print("Response is not JSON.")
return None
# Extract generated text from response JSON
if isinstance(json_data, list):
# Handle list response (if applicable for your use case)
generated_text = json_data[0].get("generated_text") if json_data else None
elif isinstance(json_data, dict):
# Handle dictionary response
generated_text = json_data.get("generated_text")
else:
print("Unexpected response format.")
return None
if generated_text is not None:
print("Text generation complete using Hugging Face API.")
print(f"Generated text: {generated_text}") # Debugging line
return generated_text
else:
print("Generated text not found in response.")
return None
except requests.exceptions.RequestException as e:
print(f"Error generating text using Hugging Face API: {e}")
return None
# Function to read and extract text from a PDF
def read_pdf(file_obj):
with fitz.open(file_obj.name) as document:
text = ""
for page_num in range(document.page_count):
page = document.load_page(page_num)
text += page.get_text()
return text
# Function to format the prompt with instructions for text generation
def format_prompt_with_instructions(text, instructions):
prompt = f"{instructions}{text}\n\nAssistant:"
return prompt
# Function to save text to a PDF
def save_text_to_pdf(text, output_path):
print(f"Saving text to PDF at {output_path}...")
doc = fitz.open() # Create a new PDF document
page = doc.new_page() # Create a new page
# Set the page margins
margin = 50 # 50 points margin
page_width = page.rect.width
page_height = page.rect.height
text_width = page_width - 2 * margin
text_height = page_height - 2 * margin
# Define font size and line spacing
font_size = 9
line_spacing = 1 * font_size
fontname = "times-roman" # Use a supported font name
# Process the text to handle line breaks and paragraphs
paragraphs = text.split("\n") # Split text into paragraphs
y_position = margin
for paragraph in paragraphs:
words = paragraph.split()
current_line = ""
for word in words:
word = str(word) # Ensure word is treated as string
# Calculate the length of the current line plus the new word
current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname)
if current_line_length <= text_width:
current_line += " " + word
else:
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname)
y_position += line_spacing
if y_position + line_spacing > page_height - margin:
page = doc.new_page() # Add a new page if text exceeds page height
y_position = margin
current_line = word
# Add the last line of the paragraph
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname)
y_position += line_spacing
# Add extra space for new paragraph
y_position += line_spacing
if y_position + line_spacing > page_height - margin:
page = doc.new_page() # Add a new page if text exceeds page height
y_position = margin
doc.save(output_path) # Save the PDF to the specified path
print("PDF saved successfully.")
# Integrated function to perform web scraping, formatting, and text generation
def scrape_and_display(query, num_results, instructions, web_search=True, use_news=False, days_back=None, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}")
if web_search:
if days_back is None:
current_year = datetime.now().year
days_back = 365 if current_year % 4 != 0 else 366 # Account for leap years
if use_news:
# For news, we might want to use a shorter time frame by default
news_days_back = min(days_back, 30) # Use at most 30 days for news
search_results = google_news_search(query, num_results, days_back=news_days_back)
else:
search_results = google_search(query, num_results=num_results, instructions=instructions, days_back=days_back)
# Summarize each result
summarized_results = []
for result in search_results:
try:
summary = summarize_webpage(result['link'], result.get('text'), query, instructions)
summarized_results.append({"link": result['link'], "text": summary})
except Exception as e:
print(f"Error summarizing {result['link']}: {e}")
summarized_results.append({"link": result['link'], "text": f"Error summarizing content: {str(e)}"})
formatted_prompt = format_prompt(query, summarized_results, instructions)
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
else:
formatted_prompt = format_prompt_with_instructions(query, instructions)
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
print("Scraping and display complete.")
if generated_summary:
assistant_index = generated_summary.find("Assistant:")
if assistant_index != -1:
generated_summary = generated_summary[assistant_index:]
else:
generated_summary = "Assistant: No response generated."
print(f"Generated summary: {generated_summary}")
return generated_summary
# Main Gradio interface function
def gradio_interface(query, use_dashboard, use_news, use_pdf, pdf, num_results, custom_instructions, temperature, repetition_penalty, top_p, clear_cache_flag):
if clear_cache_flag:
return clear_cache()
if use_dashboard:
results = []
for query_type, query_info in PREDEFINED_QUERIES.items():
formatted_query = query_info['query'].format(company=query)
formatted_instructions = query_info['instructions'].format(company=query)
result = scrape_and_display(formatted_query, num_results=num_results, instructions=formatted_instructions, web_search=True, use_news=(query_type == "Recent News"), temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
results.append(f"**{query_type}**\n\n{result}\n\n")
generated_summary = "\n".join(results)
elif use_pdf and pdf is not None:
pdf_text = read_pdf(pdf)
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=custom_instructions, web_search=False, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
else:
generated_summary = scrape_and_display(query, num_results=num_results, instructions=custom_instructions, web_search=True, use_news=use_news, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
output_pdf_path = "output_summary.pdf"
save_text_to_pdf(generated_summary, output_pdf_path)
return generated_summary, output_pdf_path
# Update the Gradio Interface
gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Company Name or Query"),
gr.Checkbox(label="Use Dashboard"),
gr.Checkbox(label="Use News Search"), # New checkbox for news search
gr.Checkbox(label="Use PDF"),
gr.File(label="Upload PDF"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results"),
gr.Textbox(label="Custom Instructions"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Repetition Penalty"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top p"),
gr.Checkbox(label="Clear Cache", visible=False)
],
outputs=["text", gr.File(label="Generated PDF")],
title="Financial Analyst AI Assistant",
description="Enter a company name to get a financial dashboard, or enter a custom query. Use the news search option for recent articles. Optionally, upload a PDF for analysis. Adjust parameters as needed for optimal results.",
allow_flagging="never"
).launch(share=True)