|
import fitz |
|
import gradio as gr |
|
import requests |
|
from bs4 import BeautifulSoup |
|
import urllib.parse |
|
import random |
|
import os |
|
from dotenv import load_dotenv |
|
import shutil |
|
import tempfile |
|
import re |
|
import unicodedata |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import sent_tokenize, word_tokenize |
|
from nltk.probability import FreqDist |
|
import nltk |
|
from datetime import datetime, timedelta |
|
|
|
|
|
nltk.download('punkt') |
|
nltk.download('stopwords') |
|
|
|
load_dotenv() |
|
|
|
|
|
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
def clear_cache(): |
|
try: |
|
|
|
cache_dir = tempfile.gettempdir() |
|
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True) |
|
|
|
|
|
|
|
if os.path.exists("output_summary.pdf"): |
|
os.remove("output_summary.pdf") |
|
|
|
|
|
|
|
print("Cache cleared successfully.") |
|
return "Cache cleared successfully." |
|
except Exception as e: |
|
print(f"Error clearing cache: {e}") |
|
return f"Error clearing cache: {e}" |
|
|
|
PREDEFINED_QUERIES = { |
|
"Recent Earnings": { |
|
"query": "{company} recent quarterly earnings", |
|
"instructions": "Provide the most recent quarterly earnings data for {company}. Include revenue, net income, loan growth, deposit growth if any, EPS and asset quality. Specify the exact quarter and year." |
|
}, |
|
"Recent News": { |
|
"query": "{company} recent news", |
|
"instructions": "Summarize the most recent significant news about {company}. Focus on events that could impact the company's financial performance or stock price." |
|
}, |
|
"Credit Rating": { |
|
"query": "{company} current credit rating", |
|
"instructions": "Provide the most recent credit rating for {company}. Include the rating agency, the exact rating, and the date it was issued or last confirmed." |
|
}, |
|
"Earnings Call Transcript": { |
|
"query": "{company} most recent earnings call transcript", |
|
"instructions": "Summarize key points from {company}'s most recent earnings call. Include date of the call, major financial highlights, and any significant forward-looking statements." |
|
} |
|
} |
|
_useragent_list = [ |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
] |
|
|
|
|
|
def extract_text_from_webpage(html): |
|
print("Extracting text from webpage...") |
|
soup = BeautifulSoup(html, 'html.parser') |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
print(f"Extracted text length: {len(text)}") |
|
return text |
|
|
|
|
|
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None, instructions="", days_back=365): |
|
print(f"Searching for term: {term}") |
|
|
|
|
|
end_date = datetime.now() |
|
start_date = end_date - timedelta(days=days_back) |
|
|
|
|
|
start_date_str = start_date.strftime("%Y-%m-%d") |
|
end_date_str = end_date.strftime("%Y-%m-%d") |
|
|
|
|
|
search_term = f"{term} after:{start_date_str} before:{end_date_str}" |
|
|
|
escaped_term = urllib.parse.quote_plus(search_term) |
|
start = 0 |
|
all_results = [] |
|
|
|
with requests.Session() as session: |
|
while len(all_results) < num_results: |
|
print(f"Fetching search results starting from: {start}") |
|
try: |
|
|
|
user_agent = random.choice(_useragent_list) |
|
headers = { |
|
'User-Agent': user_agent |
|
} |
|
print(f"Using User-Agent: {headers['User-Agent']}") |
|
|
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers=headers, |
|
params={ |
|
"q": search_term, |
|
"num": num_results - start, |
|
"hl": lang, |
|
"start": start, |
|
"safe": safe, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching search results: {e}") |
|
break |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
if not result_block: |
|
print("No more results found.") |
|
break |
|
keywords = term.split() |
|
|
|
for result in result_block: |
|
if len(all_results) >= num_results: |
|
break |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
print(f"Found link: {link}") |
|
try: |
|
webpage = session.get(link, headers=headers, timeout=timeout) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
|
|
|
|
summary = summarize_webpage(link, visible_text, term, instructions) |
|
|
|
all_results.append({"link": link, "text": summary}) |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching or processing {link}: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
print("No link found in result.") |
|
all_results.append({"link": None, "text": None}) |
|
|
|
start += len(result_block) |
|
|
|
print(f"Total results fetched: {len(all_results)}") |
|
return all_results |
|
|
|
def google_news_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None, days_back=30): |
|
print(f"Searching Google News for term: {term}") |
|
|
|
|
|
end_date = datetime.now() |
|
start_date = end_date - timedelta(days=days_back) |
|
|
|
|
|
start_date_str = start_date.strftime("%Y-%m-%d") |
|
end_date_str = end_date.strftime("%Y-%m-%d") |
|
|
|
|
|
search_term = f"{term} after:{start_date_str} before:{end_date_str}" |
|
|
|
escaped_term = urllib.parse.quote_plus(search_term) |
|
start = 0 |
|
all_results = [] |
|
|
|
with requests.Session() as session: |
|
while len(all_results) < num_results: |
|
try: |
|
user_agent = random.choice(_useragent_list) |
|
headers = { |
|
'User-Agent': user_agent |
|
} |
|
print(f"Using User-Agent: {headers['User-Agent']}") |
|
|
|
resp = session.get( |
|
url="https://news.google.com/search", |
|
headers=headers, |
|
params={ |
|
"q": search_term, |
|
"hl": lang, |
|
"gl": "US", |
|
"ceid": "US:en" |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching search results: {e}") |
|
break |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
articles = soup.find_all("article") |
|
|
|
for article in articles: |
|
if len(all_results) >= num_results: |
|
break |
|
link_element = article.find("a", attrs={"class": "WwrzSb"}) or article.find("a", href=True) |
|
|
|
if link_element: |
|
|
|
relative_link = link_element['href'] |
|
full_link = f"https://news.google.com{relative_link[1:]}" |
|
|
|
title = link_element.text |
|
|
|
try: |
|
|
|
article_page = session.get(full_link, headers=headers, timeout=timeout) |
|
article_page.raise_for_status() |
|
article_content = extract_text_from_webpage(article_page.text) |
|
|
|
all_results.append({"link": full_link, "title": title, "text": article_content}) |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching or processing {full_link}: {e}") |
|
all_results.append({"link": full_link, "title": title, "text": None}) |
|
else: |
|
print("No link found in article.") |
|
|
|
if len(articles) == 0: |
|
print("No more results found.") |
|
break |
|
|
|
start += len(articles) |
|
|
|
print(f"Total news results fetched: {len(all_results)}") |
|
return all_results |
|
|
|
def summarize_webpage(url, content, query, instructions, max_chars=1000): |
|
if content is None: |
|
return f"Unable to fetch or process content from {url}" |
|
|
|
|
|
keywords = query.split() |
|
|
|
|
|
preprocessed_text = preprocess_text(content) |
|
preprocessed_text = remove_boilerplate(preprocessed_text) |
|
filtered_text = keyword_filter(preprocessed_text, keywords) |
|
summarized_text = summarize_text(filtered_text, num_sentences=5) |
|
|
|
if not summarized_text: |
|
return f"No relevant content found for the query in {url}" |
|
|
|
|
|
webpage_prompt = f""" |
|
Instructions: {instructions} |
|
Query: {query} |
|
URL: {url} |
|
|
|
Filtered and summarized webpage content: |
|
{summarized_text} |
|
|
|
Based on the above filtered and summarized content, provide a concise summary that's directly relevant to the query. Focus on specific data, facts, or insights mentioned. Keep the summary under 200 words. |
|
|
|
Summary: |
|
""" |
|
|
|
|
|
summary = generate_text(webpage_prompt, temperature=0.3, repetition_penalty=1.2, top_p=0.9) |
|
|
|
|
|
if summary and len(summary) > max_chars: |
|
summary = summary[:max_chars] + "..." |
|
|
|
return summary if summary else f"Unable to generate summary for {url}" |
|
|
|
def preprocess_text(text): |
|
if text is None: |
|
return "" |
|
|
|
|
|
text = BeautifulSoup(str(text), "html.parser").get_text() |
|
|
|
|
|
text = re.sub(r'http\S+|www.\S+', '', text) |
|
|
|
|
|
text = re.sub(r'[^a-zA-Z\s]', '', text) |
|
|
|
|
|
text = ' '.join(text.split()) |
|
|
|
|
|
text = text.lower() |
|
|
|
return text |
|
|
|
def remove_boilerplate(text): |
|
|
|
boilerplate = [ |
|
"all rights reserved", |
|
"terms of service", |
|
"privacy policy", |
|
"cookie policy", |
|
"copyright ©", |
|
"follow us on social media" |
|
] |
|
|
|
for phrase in boilerplate: |
|
text = text.replace(phrase, '') |
|
|
|
return text |
|
|
|
def keyword_filter(text, keywords): |
|
sentences = sent_tokenize(text) |
|
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)] |
|
return ' '.join(filtered_sentences) |
|
|
|
def summarize_text(text, num_sentences=3): |
|
|
|
words = word_tokenize(text) |
|
|
|
|
|
stop_words = set(stopwords.words('english')) |
|
words = [word for word in words if word.lower() not in stop_words] |
|
|
|
|
|
freq_dist = FreqDist(words) |
|
|
|
|
|
sentences = sent_tokenize(text) |
|
sentence_scores = {} |
|
for sentence in sentences: |
|
for word in word_tokenize(sentence.lower()): |
|
if word in freq_dist: |
|
if sentence not in sentence_scores: |
|
sentence_scores[sentence] = freq_dist[word] |
|
else: |
|
sentence_scores[sentence] += freq_dist[word] |
|
|
|
|
|
summary_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:num_sentences] |
|
|
|
|
|
summary_sentences = sorted(summary_sentences, key=text.index) |
|
|
|
return ' '.join(summary_sentences) |
|
|
|
def preprocess_web_content(content, keywords): |
|
|
|
preprocessed_text = preprocess_text(content) |
|
|
|
|
|
preprocessed_text = remove_boilerplate(preprocessed_text) |
|
|
|
|
|
filtered_text = keyword_filter(preprocessed_text, keywords) |
|
|
|
|
|
summarized_text = summarize_text(filtered_text) |
|
|
|
return summarized_text |
|
|
|
|
|
|
|
def format_prompt(query, search_results, instructions): |
|
formatted_results = "" |
|
for result in search_results: |
|
link = result["link"] |
|
summary = result["text"] |
|
if link and summary: |
|
formatted_results += f"URL: {link}\nSummary: {summary}\n{'-' * 80}\n" |
|
else: |
|
formatted_results += "No relevant information found.\n" + '-' * 80 + '\n' |
|
|
|
prompt = f"""Instructions: {instructions} |
|
User Query: {query} |
|
|
|
Summarized Web Search Results: |
|
{formatted_results} |
|
|
|
Based on the above summarized information from multiple sources, provide a comprehensive and factual response to the user's query. Include specific dates, numbers, and sources where available. If information is conflicting or unclear, mention this in your response. Do not make assumptions or provide information that is not supported by the summaries. |
|
|
|
Assistant:""" |
|
return prompt |
|
|
|
|
|
def generate_text(input_text, temperature=0.3, repetition_penalty=1.2, top_p=0.9): |
|
print("Generating text using Hugging Face API...") |
|
endpoint = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" |
|
headers = { |
|
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", |
|
"Content-Type": "application/json" |
|
} |
|
data = { |
|
"inputs": input_text, |
|
"parameters": { |
|
"max_new_tokens": 1000, |
|
"temperature": temperature, |
|
"repetition_penalty": repetition_penalty, |
|
"top_p": top_p, |
|
"do_sample": True |
|
} |
|
} |
|
|
|
try: |
|
response = requests.post(endpoint, headers=headers, json=data) |
|
response.raise_for_status() |
|
|
|
|
|
try: |
|
json_data = response.json() |
|
except ValueError: |
|
print("Response is not JSON.") |
|
return None |
|
|
|
|
|
if isinstance(json_data, list): |
|
|
|
generated_text = json_data[0].get("generated_text") if json_data else None |
|
elif isinstance(json_data, dict): |
|
|
|
generated_text = json_data.get("generated_text") |
|
else: |
|
print("Unexpected response format.") |
|
return None |
|
|
|
if generated_text is not None: |
|
print("Text generation complete using Hugging Face API.") |
|
print(f"Generated text: {generated_text}") |
|
return generated_text |
|
else: |
|
print("Generated text not found in response.") |
|
return None |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"Error generating text using Hugging Face API: {e}") |
|
return None |
|
|
|
|
|
def read_pdf(file_obj): |
|
with fitz.open(file_obj.name) as document: |
|
text = "" |
|
for page_num in range(document.page_count): |
|
page = document.load_page(page_num) |
|
text += page.get_text() |
|
return text |
|
|
|
|
|
def format_prompt_with_instructions(text, instructions): |
|
prompt = f"{instructions}{text}\n\nAssistant:" |
|
return prompt |
|
|
|
|
|
def save_text_to_pdf(text, output_path): |
|
print(f"Saving text to PDF at {output_path}...") |
|
doc = fitz.open() |
|
page = doc.new_page() |
|
|
|
|
|
margin = 50 |
|
page_width = page.rect.width |
|
page_height = page.rect.height |
|
text_width = page_width - 2 * margin |
|
text_height = page_height - 2 * margin |
|
|
|
|
|
font_size = 9 |
|
line_spacing = 1 * font_size |
|
fontname = "times-roman" |
|
|
|
|
|
paragraphs = text.split("\n") |
|
y_position = margin |
|
|
|
for paragraph in paragraphs: |
|
words = paragraph.split() |
|
current_line = "" |
|
|
|
for word in words: |
|
word = str(word) |
|
|
|
current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname) |
|
if current_line_length <= text_width: |
|
current_line += " " + word |
|
else: |
|
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) |
|
y_position += line_spacing |
|
if y_position + line_spacing > page_height - margin: |
|
page = doc.new_page() |
|
y_position = margin |
|
current_line = word |
|
|
|
|
|
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) |
|
y_position += line_spacing |
|
|
|
|
|
y_position += line_spacing |
|
if y_position + line_spacing > page_height - margin: |
|
page = doc.new_page() |
|
y_position = margin |
|
|
|
doc.save(output_path) |
|
print("PDF saved successfully.") |
|
|
|
|
|
def scrape_and_display(query, num_results, instructions, web_search=True, use_news=False, days_back=None, temperature=0.7, repetition_penalty=1.0, top_p=0.9): |
|
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}") |
|
if web_search: |
|
if days_back is None: |
|
current_year = datetime.now().year |
|
days_back = 365 if current_year % 4 != 0 else 366 |
|
|
|
if use_news: |
|
|
|
news_days_back = min(days_back, 30) |
|
search_results = google_news_search(query, num_results, days_back=news_days_back) |
|
else: |
|
search_results = google_search(query, num_results=num_results, instructions=instructions, days_back=days_back) |
|
|
|
|
|
|
|
summarized_results = [] |
|
for result in search_results: |
|
try: |
|
summary = summarize_webpage(result['link'], result.get('text'), query, instructions) |
|
summarized_results.append({"link": result['link'], "text": summary}) |
|
except Exception as e: |
|
print(f"Error summarizing {result['link']}: {e}") |
|
summarized_results.append({"link": result['link'], "text": f"Error summarizing content: {str(e)}"}) |
|
|
|
formatted_prompt = format_prompt(query, summarized_results, instructions) |
|
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
else: |
|
formatted_prompt = format_prompt_with_instructions(query, instructions) |
|
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
|
|
print("Scraping and display complete.") |
|
if generated_summary: |
|
assistant_index = generated_summary.find("Assistant:") |
|
if assistant_index != -1: |
|
generated_summary = generated_summary[assistant_index:] |
|
else: |
|
generated_summary = "Assistant: No response generated." |
|
print(f"Generated summary: {generated_summary}") |
|
return generated_summary |
|
|
|
|
|
def gradio_interface(query, use_dashboard, use_news, use_pdf, pdf, num_results, custom_instructions, temperature, repetition_penalty, top_p, clear_cache_flag): |
|
if clear_cache_flag: |
|
return clear_cache() |
|
|
|
if use_dashboard: |
|
results = [] |
|
for query_type, query_info in PREDEFINED_QUERIES.items(): |
|
formatted_query = query_info['query'].format(company=query) |
|
formatted_instructions = query_info['instructions'].format(company=query) |
|
result = scrape_and_display(formatted_query, num_results=num_results, instructions=formatted_instructions, web_search=True, use_news=(query_type == "Recent News"), temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
results.append(f"**{query_type}**\n\n{result}\n\n") |
|
generated_summary = "\n".join(results) |
|
elif use_pdf and pdf is not None: |
|
pdf_text = read_pdf(pdf) |
|
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=custom_instructions, web_search=False, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
else: |
|
generated_summary = scrape_and_display(query, num_results=num_results, instructions=custom_instructions, web_search=True, use_news=use_news, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
|
|
output_pdf_path = "output_summary.pdf" |
|
save_text_to_pdf(generated_summary, output_pdf_path) |
|
|
|
return generated_summary, output_pdf_path |
|
|
|
|
|
gr.Interface( |
|
fn=gradio_interface, |
|
inputs=[ |
|
gr.Textbox(label="Company Name or Query"), |
|
gr.Checkbox(label="Use Dashboard"), |
|
gr.Checkbox(label="Use News Search"), |
|
gr.Checkbox(label="Use PDF"), |
|
gr.File(label="Upload PDF"), |
|
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results"), |
|
gr.Textbox(label="Custom Instructions"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Repetition Penalty"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top p"), |
|
gr.Checkbox(label="Clear Cache", visible=False) |
|
], |
|
outputs=["text", gr.File(label="Generated PDF")], |
|
title="Financial Analyst AI Assistant", |
|
description="Enter a company name to get a financial dashboard, or enter a custom query. Use the news search option for recent articles. Optionally, upload a PDF for analysis. Adjust parameters as needed for optimal results.", |
|
allow_flagging="never" |
|
).launch(share=True) |