|
import fitz |
|
import gradio as gr |
|
import requests |
|
from bs4 import BeautifulSoup |
|
import urllib.parse |
|
import random |
|
import os |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
|
|
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
_useragent_list = [ |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
] |
|
|
|
|
|
def extract_text_from_webpage(html): |
|
print("Extracting text from webpage...") |
|
soup = BeautifulSoup(html, 'html.parser') |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
print(f"Extracted text length: {len(text)}") |
|
return text |
|
|
|
|
|
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): |
|
"""Performs a Google search and returns the results.""" |
|
print(f"Searching for term: {term}") |
|
escaped_term = urllib.parse.quote_plus(term) |
|
start = 0 |
|
all_results = [] |
|
max_chars_per_page = 8000 |
|
|
|
with requests.Session() as session: |
|
while start < num_results: |
|
print(f"Fetching search results starting from: {start}") |
|
try: |
|
|
|
user_agent = random.choice(_useragent_list) |
|
headers = { |
|
'User-Agent': user_agent |
|
} |
|
print(f"Using User-Agent: {headers['User-Agent']}") |
|
|
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers=headers, |
|
params={ |
|
"q": term, |
|
"num": num_results - start, |
|
"hl": lang, |
|
"start": start, |
|
"safe": safe, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching search results: {e}") |
|
break |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
if not result_block: |
|
print("No more results found.") |
|
break |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
print(f"Found link: {link}") |
|
try: |
|
webpage = session.get(link, headers=headers, timeout=timeout) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
if len(visible_text) > max_chars_per_page: |
|
visible_text = visible_text[:max_chars_per_page] + "..." |
|
all_results.append({"link": link, "text": visible_text}) |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching or processing {link}: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
print("No link found in result.") |
|
all_results.append({"link": None, "text": None}) |
|
start += len(result_block) |
|
print(f"Total results fetched: {len(all_results)}") |
|
return all_results |
|
|
|
|
|
def format_prompt(query, search_results, instructions): |
|
formatted_results = "" |
|
for result in search_results: |
|
link = result["link"] |
|
text = result["text"] |
|
if link: |
|
formatted_results += f"URL: {link}\nContent: {text}\n{'-'*80}\n" |
|
else: |
|
formatted_results += "No link found.\n" + '-'*80 + '\n' |
|
|
|
prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:" |
|
return prompt |
|
|
|
|
|
def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9): |
|
print("Generating text using Hugging Face API...") |
|
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" |
|
headers = { |
|
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", |
|
"Content-Type": "application/json" |
|
} |
|
data = { |
|
"inputs": input_text, |
|
"parameters": { |
|
"max_new_tokens": 8000, |
|
"temperature": temperature, |
|
"repetition_penalty": repetition_penalty, |
|
"top_p": top_p |
|
} |
|
} |
|
|
|
try: |
|
response = requests.post(endpoint, headers=headers, json=data) |
|
response.raise_for_status() |
|
|
|
|
|
try: |
|
json_data = response.json() |
|
except ValueError: |
|
print("Response is not JSON.") |
|
return None |
|
|
|
|
|
if isinstance(json_data, list): |
|
|
|
generated_text = json_data[0].get("generated_text") if json_data else None |
|
elif isinstance(json_data, dict): |
|
|
|
generated_text = json_data.get("generated_text") |
|
else: |
|
print("Unexpected response format.") |
|
return None |
|
|
|
if generated_text is not None: |
|
print("Text generation complete using Hugging Face API.") |
|
print(f"Generated text: {generated_text}") |
|
return generated_text |
|
else: |
|
print("Generated text not found in response.") |
|
return None |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"Error generating text using Hugging Face API: {e}") |
|
return None |
|
|
|
|
|
def read_pdf(file_obj): |
|
with fitz.open(file_obj.name) as document: |
|
text = "" |
|
for page_num in range(document.page_count): |
|
page = document.load_page(page_num) |
|
text += page.get_text() |
|
return text |
|
|
|
|
|
def format_prompt_with_instructions(text, instructions): |
|
prompt = f"{instructions}{text}\n\nAssistant:" |
|
return prompt |
|
|
|
|
|
def save_text_to_pdf(text, output_path): |
|
print(f"Saving text to PDF at {output_path}...") |
|
doc = fitz.open() |
|
page = doc.new_page() |
|
|
|
|
|
margin = 50 |
|
page_width = page.rect.width |
|
page_height = page.rect.height |
|
text_width = page_width - 2 * margin |
|
text_height = page_height - 2 * margin |
|
|
|
|
|
font_size = 9 |
|
line_spacing = 1 * font_size |
|
fontname = "times-roman" |
|
|
|
|
|
paragraphs = text.split("\n") |
|
y_position = margin |
|
|
|
for paragraph in paragraphs: |
|
words = paragraph.split() |
|
current_line = "" |
|
|
|
for word in words: |
|
word = str(word) |
|
|
|
current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname) |
|
if current_line_length <= text_width: |
|
current_line += " " + word |
|
else: |
|
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) |
|
y_position += line_spacing |
|
if y_position + line_spacing > page_height - margin: |
|
page = doc.new_page() |
|
y_position = margin |
|
current_line = word |
|
|
|
|
|
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) |
|
y_position += line_spacing |
|
|
|
|
|
y_position += line_spacing |
|
if y_position + line_spacing > page_height - margin: |
|
page = doc.new_page() |
|
y_position = margin |
|
|
|
doc.save(output_path) |
|
print("PDF saved successfully.") |
|
|
|
|
|
|
|
|
|
|
|
def scrape_and_display(query, num_results, instructions, web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9): |
|
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}") |
|
if web_search: |
|
search_results = google_search(query, num_results) |
|
formatted_prompt = format_prompt(query, search_results, instructions) |
|
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
else: |
|
formatted_prompt = format_prompt_with_instructions(query, instructions) |
|
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
print("Scraping and display complete.") |
|
if generated_summary: |
|
|
|
assistant_index = generated_summary.find("Assistant:") |
|
if assistant_index != -1: |
|
generated_summary = generated_summary[assistant_index:] |
|
else: |
|
generated_summary = "Assistant: No response generated." |
|
print(f"Generated summary: {generated_summary}") |
|
return generated_summary |
|
|
|
|
|
def gradio_interface(query, use_pdf, pdf, num_results, instructions, temperature, repetition_penalty, top_p): |
|
if use_pdf and pdf is not None: |
|
pdf_text = read_pdf(pdf) |
|
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=instructions, web_search=False, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
else: |
|
generated_summary = scrape_and_display(query, num_results=num_results, instructions=instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
|
|
|
|
output_pdf_path = "output_summary.pdf" |
|
save_text_to_pdf(generated_summary, output_pdf_path) |
|
|
|
return generated_summary, output_pdf_path |
|
|
|
|
|
gr.Interface( |
|
fn=gradio_interface, |
|
inputs=[ |
|
gr.Textbox(label="Query"), |
|
gr.Checkbox(label="Use PDF"), |
|
gr.File(label="Upload PDF"), |
|
gr.Slider(minimum=1, maximum=20, label="Number of Results"), |
|
gr.Textbox(label="Instructions"), |
|
gr.Slider(minimum=0.1, maximum=1.0, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, label="Repetition Penalty"), |
|
gr.Slider(minimum=0.1, maximum=1.0, label="Top p") |
|
], |
|
outputs=["text", "file"], |
|
title="Financial Analyst AI Assistant", |
|
description="Enter your query about a company's financials to get valuable insights. Optionally, upload a PDF for analysis.Please instruct me for curating your output template, also for web search you can modify my search results but its advisable to restrict the same at 10. You can also adjust my parameters like Temperature, Repetition Penalty and Top_P, its adivsable to set repetition penalty at 1 and other two parameters at 0.1.", |
|
).launch(share=True) |
|
|