|
import os |
|
import json |
|
import re |
|
import gradio as gr |
|
import requests |
|
from duckduckgo_search import DDGS |
|
from typing import List |
|
from pydantic import BaseModel, Field |
|
from tempfile import NamedTemporaryFile |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from llama_parse import LlamaParse |
|
from langchain_core.documents import Document |
|
from huggingface_hub import InferenceClient |
|
import inspect |
|
|
|
|
|
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY") |
|
|
|
MODELS = [ |
|
"mistralai/Mistral-7B-Instruct-v0.3", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"microsoft/Phi-3-mini-4k-instruct" |
|
] |
|
|
|
|
|
llama_parser = LlamaParse( |
|
api_key=llama_cloud_api_key, |
|
result_type="markdown", |
|
num_workers=4, |
|
verbose=True, |
|
language="en", |
|
) |
|
|
|
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]: |
|
"""Loads and splits the document into pages.""" |
|
if parser == "pypdf": |
|
loader = PyPDFLoader(file.name) |
|
return loader.load_and_split() |
|
elif parser == "llamaparse": |
|
try: |
|
documents = llama_parser.load_data(file.name) |
|
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents] |
|
except Exception as e: |
|
print(f"Error using Llama Parse: {str(e)}") |
|
print("Falling back to PyPDF parser") |
|
loader = PyPDFLoader(file.name) |
|
return loader.load_and_split() |
|
else: |
|
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.") |
|
|
|
def get_embeddings(): |
|
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
def update_vectors(files, parser): |
|
if not files: |
|
return "Please upload at least one PDF file." |
|
|
|
embed = get_embeddings() |
|
total_chunks = 0 |
|
|
|
all_data = [] |
|
for file in files: |
|
data = load_document(file, parser) |
|
all_data.extend(data) |
|
total_chunks += len(data) |
|
|
|
if os.path.exists("faiss_database"): |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
database.add_documents(all_data) |
|
else: |
|
database = FAISS.from_documents(all_data, embed) |
|
|
|
database.save_local("faiss_database") |
|
|
|
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}." |
|
|
|
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False): |
|
print(f"Starting generate_chunked_response with {num_calls} calls") |
|
client = InferenceClient(model, token=huggingface_token) |
|
full_response = "" |
|
messages = [{"role": "user", "content": prompt}] |
|
|
|
for i in range(num_calls): |
|
print(f"Starting API call {i+1}") |
|
if should_stop: |
|
print("Stop clicked, breaking loop") |
|
break |
|
try: |
|
for message in client.chat_completion( |
|
messages=messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
stream=True, |
|
): |
|
if should_stop: |
|
print("Stop clicked during streaming, breaking") |
|
break |
|
if message.choices and message.choices[0].delta and message.choices[0].delta.content: |
|
chunk = message.choices[0].delta.content |
|
full_response += chunk |
|
print(f"API call {i+1} completed") |
|
except Exception as e: |
|
print(f"Error in generating response: {str(e)}") |
|
|
|
|
|
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL) |
|
clean_response = clean_response.replace("Using the following context:", "").strip() |
|
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip() |
|
|
|
|
|
paragraphs = clean_response.split('\n\n') |
|
unique_paragraphs = [] |
|
for paragraph in paragraphs: |
|
if paragraph not in unique_paragraphs: |
|
sentences = paragraph.split('. ') |
|
unique_sentences = [] |
|
for sentence in sentences: |
|
if sentence not in unique_sentences: |
|
unique_sentences.append(sentence) |
|
unique_paragraphs.append('. '.join(unique_sentences)) |
|
|
|
final_response = '\n\n'.join(unique_paragraphs) |
|
|
|
print(f"Final clean response: {final_response[:100]}...") |
|
return final_response |
|
|
|
def duckduckgo_search(query): |
|
with DDGS() as ddgs: |
|
results = ddgs.text(query, max_results=5) |
|
return results |
|
|
|
class CitingSources(BaseModel): |
|
sources: List[str] = Field( |
|
..., |
|
description="List of sources to cite. Should be an URL of the source." |
|
) |
|
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls): |
|
if not message.strip(): |
|
return "", history |
|
|
|
history = history + [(message, "")] |
|
|
|
try: |
|
if use_web_search: |
|
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature): |
|
history[-1] = (message, f"{main_content}\n\n{sources}") |
|
yield history |
|
else: |
|
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature): |
|
history[-1] = (message, partial_response) |
|
yield history |
|
except gr.CancelledError: |
|
yield history |
|
|
|
def retry_last_response(history, use_web_search, model, temperature, num_calls): |
|
if not history: |
|
return history |
|
|
|
last_user_msg = history[-1][0] |
|
history = history[:-1] |
|
|
|
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls) |
|
|
|
def respond(message, history, model, temperature, num_calls, use_web_search): |
|
if use_web_search: |
|
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature): |
|
yield f"{main_content}\n\n{sources}" |
|
else: |
|
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature): |
|
yield partial_response |
|
|
|
def get_response_with_search(query, model, num_calls=3, temperature=0.2): |
|
search_results = duckduckgo_search(query) |
|
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" |
|
for result in search_results if 'body' in result) |
|
|
|
prompt = f"""Using the following context: |
|
{context} |
|
Write a detailed and complete research document that fulfills the following user request: '{query}' |
|
After writing the document, please provide a list of sources used in your response.""" |
|
|
|
client = InferenceClient(model, token=huggingface_token) |
|
|
|
main_content = "" |
|
for i in range(num_calls): |
|
for message in client.chat_completion( |
|
messages=[{"role": "user", "content": prompt}], |
|
max_tokens=1000, |
|
temperature=temperature, |
|
stream=True, |
|
): |
|
if message.choices and message.choices[0].delta and message.choices[0].delta.content: |
|
chunk = message.choices[0].delta.content |
|
main_content += chunk |
|
yield main_content, "" |
|
|
|
def get_response_from_pdf(query, model, num_calls=3, temperature=0.2): |
|
embed = get_embeddings() |
|
if os.path.exists("faiss_database"): |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
else: |
|
yield "No documents available. Please upload PDF documents to answer questions." |
|
return |
|
|
|
retriever = database.as_retriever() |
|
relevant_docs = retriever.get_relevant_documents(query) |
|
context_str = "\n".join([doc.page_content for doc in relevant_docs]) |
|
|
|
prompt = f"""Using the following context from the PDF documents: |
|
{context_str} |
|
Write a detailed and complete response that answers the following user question: '{query}'""" |
|
|
|
client = InferenceClient(model, token=huggingface_token) |
|
|
|
response = "" |
|
for i in range(num_calls): |
|
for message in client.chat_completion( |
|
messages=[{"role": "user", "content": prompt}], |
|
max_tokens=1000, |
|
temperature=temperature, |
|
stream=True, |
|
): |
|
if message.choices and message.choices[0].delta and message.choices[0].delta.content: |
|
chunk = message.choices[0].delta.content |
|
response += chunk |
|
yield response |
|
|
|
def vote(data: gr.LikeData): |
|
if data.liked: |
|
print(f"You upvoted this response: {data.value}") |
|
else: |
|
print(f"You downvoted this response: {data.value}") |
|
|
|
css = """ |
|
/* Add your custom CSS here */ |
|
""" |
|
|
|
|
|
use_web_search = gr.Checkbox(label="Use Web Search", value=False) |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"), |
|
use_web_search |
|
], |
|
title="AI-powered Web Search and PDF Chat Assistant", |
|
description="Chat with your PDFs or use web search to answer questions.", |
|
theme=gr.themes.Soft( |
|
primary_hue="orange", |
|
secondary_hue="amber", |
|
neutral_hue="gray", |
|
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"] |
|
).set( |
|
body_background_fill_dark="#0c0505", |
|
block_background_fill_dark="#0c0505", |
|
block_border_width="1px", |
|
block_title_background_fill_dark="#1b0f0f", |
|
input_background_fill_dark="#140b0b", |
|
button_secondary_background_fill_dark="#140b0b", |
|
border_color_accent_dark="#1b0f0f", |
|
border_color_primary_dark="#1b0f0f", |
|
background_fill_secondary_dark="#0c0505", |
|
color_accent_soft_dark="transparent", |
|
code_background_fill_dark="#140b0b" |
|
), |
|
|
|
css=css, |
|
examples=[ |
|
["Tell me about the contents of the uploaded PDFs."], |
|
["What are the main topics discussed in the documents?"], |
|
["Can you summarize the key points from the PDFs?"] |
|
], |
|
cache_examples=False, |
|
analytics_enabled=False, |
|
) |
|
|
|
|
|
with demo: |
|
gr.Markdown("## Upload PDF Documents") |
|
|
|
with gr.Row(): |
|
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) |
|
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse") |
|
update_button = gr.Button("Upload Document") |
|
|
|
update_output = gr.Textbox(label="Update Status") |
|
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output) |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
## How to use |
|
1. Upload PDF documents using the file input at the top. |
|
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store. |
|
3. Ask questions in the chat interface. |
|
4. Toggle "Use Web Search" to switch between PDF chat and web search. |
|
5. Adjust Temperature and Number of API Calls to fine-tune the response generation. |
|
6. Use the provided examples or ask your own questions. |
|
""" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |