|
import os |
|
import gradio as gr |
|
from PyPDF2 import PdfReader |
|
import requests |
|
from dotenv import load_dotenv |
|
from transformers import AutoTokenizer |
|
|
|
load_dotenv() |
|
|
|
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3") |
|
def count_tokens(text): |
|
return len(tokenizer.encode(text)) |
|
def summarize_text(text, instructions, agent_name, max_length, temperature, repetition_penalty, top_p): |
|
print(f"{agent_name}: Starting summarization") |
|
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" |
|
headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"} |
|
summaries = [] |
|
current_text = text |
|
while len(current_text) > 0: |
|
payload = { |
|
"inputs": f"{instructions}\n\nText to summarize:\n{current_text}", |
|
"parameters": { |
|
"max_length": max_length, |
|
"temperature": temperature, |
|
"repetition_penalty": repetition_penalty, |
|
"top_p": top_p |
|
} |
|
} |
|
print(f"{agent_name}: Sending request to API") |
|
response = requests.post(API_URL, headers=headers, json=payload) |
|
print(f"{agent_name}: Received response from API") |
|
generated_text = response.json()[0]["generated_text"] |
|
|
|
summary = generated_text.split("\n\n")[-1] |
|
summaries.append(summary) |
|
|
|
current_text = current_text[len(summary):].strip() |
|
|
|
final_summary = "\n\n".join(summaries) |
|
return final_summary |
|
def process_pdf(pdf_file, chunk_instructions, window_instructions, final_instructions, max_length, temperature, repetition_penalty, top_p): |
|
print("Starting PDF processing") |
|
|
|
reader = PdfReader(pdf_file) |
|
text = "" |
|
for page in reader.pages: |
|
text += page.extract_text() + "\n\n" |
|
print(f"Extracted {len(reader.pages)} pages from PDF") |
|
|
|
chunks = text.split("\n\n") |
|
print(f"Split text into {len(chunks)} chunks") |
|
|
|
agent1_summaries = [] |
|
for i, chunk in enumerate(chunks): |
|
print(f"Agent 1: Processing chunk {i+1}/{len(chunks)}") |
|
summary = summarize_text(chunk, chunk_instructions, "Agent 1", max_length, temperature, repetition_penalty, top_p) |
|
agent1_summaries.append(summary) |
|
print("Agent 1: Finished processing all chunks") |
|
|
|
concatenated_summary = "\n\n".join(agent1_summaries) |
|
print(f"Concatenated Agent 1 summaries (length: {count_tokens(concatenated_summary)} tokens)") |
|
print(f"Concatenated Summary: {concatenated_summary}") |
|
|
|
window_size = 3500 |
|
step_size = 3000 |
|
windows = [] |
|
current_position = 0 |
|
while current_position < len(concatenated_summary): |
|
window_end = current_position |
|
window_text = "" |
|
while count_tokens(window_text) < window_size and window_end < len(concatenated_summary): |
|
window_text += concatenated_summary[window_end] |
|
window_end += 1 |
|
windows.append(window_text) |
|
current_position += step_size |
|
print(f"Created {len(windows)} windows for intermediate summarization") |
|
|
|
intermediate_summaries = [] |
|
for i, window in enumerate(windows): |
|
print(f"Processing window {i+1}/{len(windows)}") |
|
summary = summarize_text(window, window_instructions, f"Window {i+1}", max_length, temperature, repetition_penalty, top_p) |
|
intermediate_summaries.append(summary) |
|
|
|
final_input = "\n\n".join(intermediate_summaries) |
|
print(f"Final input length: {count_tokens(final_input)} tokens") |
|
final_summary = summarize_text(final_input, final_instructions, "Agent 2", max_length, temperature, repetition_penalty, top_p) |
|
print("Agent 2: Finished final summarization") |
|
return final_summary |
|
def pdf_summarizer(pdf_file, chunk_instructions, window_instructions, final_instructions, max_length, temperature, repetition_penalty, top_p): |
|
if pdf_file is None: |
|
print("Error: No PDF file uploaded") |
|
return "Please upload a PDF file." |
|
try: |
|
print(f"Starting summarization process for file: {pdf_file.name}") |
|
summary = process_pdf(pdf_file.name, chunk_instructions, window_instructions, final_instructions, max_length, temperature, repetition_penalty, top_p) |
|
print("Summarization process completed successfully") |
|
return summary |
|
except Exception as e: |
|
print(f"An error occurred: {str(e)}") |
|
return f"An error occurred: {str(e)}" |
|
|
|
iface = gr.Interface( |
|
fn=pdf_summarizer, |
|
inputs=[ |
|
gr.File(label="Upload PDF"), |
|
gr.Textbox(label="Chunk Instructions", placeholder="Instructions for summarizing each chunk"), |
|
gr.Textbox(label="Window Instructions", placeholder="Instructions for summarizing each window"), |
|
gr.Textbox(label="Final Instructions", placeholder="Instructions for final summarization"), |
|
gr.Slider(label="Max Length", minimum=500, maximum=3500, step=100, value=2000), |
|
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7), |
|
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.1, value=1.1), |
|
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.9) |
|
], |
|
outputs=gr.Textbox(label="Summary"), |
|
title="PDF Earnings Summary Generator", |
|
description="Upload a PDF of an earnings summary or transcript to generate a concise summary." |
|
) |
|
print("Launching Gradio interface") |
|
iface.launch() |