|
import os |
|
import json |
|
import re |
|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
import random |
|
import feedparser |
|
import urllib.parse |
|
from tempfile import NamedTemporaryFile |
|
from typing import List |
|
from bs4 import BeautifulSoup |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import LLMChain |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader, PDFMinerLoader |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough |
|
from langchain_core.documents import Document |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
from openpyxl import load_workbook |
|
from openpyxl.utils.dataframe import dataframe_to_rows |
|
import camelot |
|
|
|
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
|
|
|
|
memory_database = {} |
|
conversation_history = [] |
|
news_database = [] |
|
|
|
def load_and_split_document_basic(file): |
|
"""Loads and splits the document into pages.""" |
|
loader = PyPDFLoader(file.name) |
|
data = loader.load_and_split() |
|
return data |
|
|
|
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]: |
|
"""Loads and splits the document into chunks.""" |
|
loader = PyPDFLoader(file.name) |
|
pages = loader.load() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len, |
|
) |
|
|
|
chunks = text_splitter.split_documents(pages) |
|
return chunks |
|
|
|
def load_and_split_document_basic(file: NamedTemporaryFile, parser: str) -> List[Document]: |
|
"""Loads and splits the document into pages.""" |
|
if parser == "PyPDF": |
|
loader = PyPDFLoader(file.name) |
|
elif parser == "PDFMiner": |
|
loader = PDFMinerLoader(file.name) |
|
elif parser == "Camelot": |
|
return load_and_split_document_camelot(file) |
|
else: |
|
raise ValueError(f"Unknown parser: {parser}") |
|
|
|
return loader.load_and_split() |
|
|
|
def load_and_split_document_recursive(file: NamedTemporaryFile, parser: str) -> List[Document]: |
|
"""Loads and splits the document into chunks using recursive character text splitter.""" |
|
if parser == "PyPDF": |
|
loader = PyPDFLoader(file.name) |
|
elif parser == "PDFMiner": |
|
loader = PDFMinerLoader(file.name) |
|
elif parser == "Camelot": |
|
return load_and_split_document_camelot(file) |
|
else: |
|
raise ValueError(f"Unknown parser: {parser}") |
|
|
|
pages = loader.load() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len, |
|
) |
|
|
|
chunks = text_splitter.split_documents(pages) |
|
return chunks |
|
|
|
def load_and_split_document_camelot(file: NamedTemporaryFile) -> List[Document]: |
|
"""Loads and splits the document using Camelot for tables and charts.""" |
|
tables = camelot.read_pdf(file.name, pages='all') |
|
documents = [] |
|
|
|
for i, table in enumerate(tables): |
|
df = table.df |
|
content = df.to_string(index=False) |
|
documents.append(Document(page_content=content, metadata={"source": file.name, "table_number": i+1})) |
|
|
|
return documents |
|
|
|
def load_document(file: NamedTemporaryFile, parser: str, use_recursive_splitter: bool) -> List[Document]: |
|
"""Loads the document using the specified parser and splitting method.""" |
|
if parser == "Camelot": |
|
return load_and_split_document_camelot(file) |
|
elif use_recursive_splitter: |
|
return load_and_split_document_recursive(file, parser) |
|
else: |
|
return load_and_split_document_basic(file, parser) |
|
|
|
def update_vectors(files, use_recursive_splitter, selected_parser): |
|
if not files: |
|
return "Please upload at least one PDF file." |
|
|
|
embed = get_embeddings() |
|
total_chunks = 0 |
|
|
|
all_data = [] |
|
for file in files: |
|
data = load_document(file, selected_parser, use_recursive_splitter) |
|
all_data.extend(data) |
|
total_chunks += len(data) |
|
|
|
if os.path.exists("faiss_database"): |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
database.add_documents(all_data) |
|
else: |
|
database = FAISS.from_documents(all_data, embed) |
|
|
|
database.save_local("faiss_database") |
|
|
|
splitting_method = "recursive splitting" if use_recursive_splitter else "page-by-page splitting" |
|
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {selected_parser} parser with {splitting_method}." |
|
|
|
def get_embeddings(): |
|
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
def create_or_update_database(data, embeddings): |
|
if os.path.exists("faiss_database"): |
|
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) |
|
db.add_documents(data) |
|
else: |
|
db = FAISS.from_documents(data, embeddings) |
|
db.save_local("faiss_database") |
|
|
|
def clear_cache(): |
|
if os.path.exists("faiss_database"): |
|
os.remove("faiss_database") |
|
return "Cache cleared successfully." |
|
else: |
|
return "No cache to clear." |
|
|
|
def get_similarity(text1, text2): |
|
vectorizer = TfidfVectorizer().fit_transform([text1, text2]) |
|
return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0] |
|
|
|
prompt = """ |
|
Answer the question based on the following information: |
|
|
|
Conversation History: |
|
{history} |
|
|
|
Context from documents: |
|
{context} |
|
|
|
Current Question: {question} |
|
|
|
If the question is referring to the conversation history, use that information to answer. |
|
If the question is not related to the conversation history, use the context from documents to answer. |
|
If you don't have enough information to answer, say so. |
|
|
|
Provide a concise and direct answer to the question: |
|
""" |
|
|
|
def get_model(temperature, top_p, repetition_penalty): |
|
return HuggingFaceHub( |
|
repo_id="mistralai/Mistral-7B-Instruct-v0.3", |
|
model_kwargs={ |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"repetition_penalty": repetition_penalty, |
|
"max_length": 1000 |
|
}, |
|
huggingfacehub_api_token=huggingface_token |
|
) |
|
|
|
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): |
|
full_response = "" |
|
for i in range(max_chunks): |
|
chunk = model(prompt + full_response, max_new_tokens=max_tokens) |
|
chunk = chunk.strip() |
|
if chunk.endswith((".", "!", "?")): |
|
full_response += chunk |
|
break |
|
full_response += chunk |
|
return full_response.strip() |
|
|
|
def manage_conversation_history(question, answer, history, max_history=5): |
|
history.append({"question": question, "answer": answer}) |
|
if len(history) > max_history: |
|
history.pop(0) |
|
return history |
|
|
|
def is_related_to_history(question, history, threshold=0.5): |
|
if not history: |
|
return False |
|
history_text = " ".join([f"{h['question']} {h['answer']}" for h in history]) |
|
similarity = get_similarity(question, history_text) |
|
return similarity > threshold |
|
|
|
def extract_text_from_webpage(html): |
|
soup = BeautifulSoup(html, 'html.parser') |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
return text |
|
|
|
_useragent_list = [ |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
] |
|
|
|
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): |
|
escaped_term = urllib.parse.quote_plus(term) |
|
start = 0 |
|
all_results = [] |
|
max_chars_per_page = 8000 |
|
|
|
print(f"Starting Google search for term: '{term}'") |
|
|
|
with requests.Session() as session: |
|
while start < num_results: |
|
try: |
|
user_agent = random.choice(_useragent_list) |
|
headers = { |
|
'User-Agent': user_agent |
|
} |
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers=headers, |
|
params={ |
|
"q": term, |
|
"num": num_results - start, |
|
"hl": lang, |
|
"start": start, |
|
"safe": safe, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
print(f"Successfully retrieved search results page (start={start})") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error retrieving search results: {e}") |
|
break |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
if not result_block: |
|
print("No results found on this page") |
|
break |
|
|
|
print(f"Found {len(result_block)} results on this page") |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
print(f"Processing link: {link}") |
|
try: |
|
webpage = session.get(link, headers=headers, timeout=timeout) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
if len(visible_text) > max_chars_per_page: |
|
visible_text = visible_text[:max_chars_per_page] + "..." |
|
all_results.append({"link": link, "text": visible_text}) |
|
print(f"Successfully extracted text from {link}") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error retrieving webpage content: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
print("No link found for this result") |
|
all_results.append({"link": None, "text": None}) |
|
start += len(result_block) |
|
|
|
print(f"Search completed. Total results: {len(all_results)}") |
|
print("Search results:") |
|
for i, result in enumerate(all_results, 1): |
|
print(f"Result {i}:") |
|
print(f" Link: {result['link']}") |
|
if result['text']: |
|
print(f" Text: {result['text'][:100]}...") |
|
else: |
|
print(" Text: None") |
|
print("End of search results") |
|
|
|
if not all_results: |
|
print("No search results found. Returning a default message.") |
|
return [{"link": None, "text": "No information found in the web search results."}] |
|
|
|
return all_results |
|
|
|
def fetch_google_news_rss(query, num_results=10): |
|
base_url = "https://news.google.com/rss/search" |
|
params = { |
|
"q": query, |
|
"hl": "en-US", |
|
"gl": "US", |
|
"ceid": "US:en" |
|
} |
|
url = f"{base_url}?{urllib.parse.urlencode(params)}" |
|
|
|
try: |
|
feed = feedparser.parse(url) |
|
articles = [] |
|
|
|
for entry in feed.entries[:num_results]: |
|
article = { |
|
"published_date": entry.get("published", "N/A"), |
|
"title": entry.get("title", "N/A"), |
|
"url": entry.get("link", "N/A"), |
|
"content": entry.get("summary", "N/A") |
|
} |
|
articles.append(article) |
|
|
|
return articles |
|
except Exception as e: |
|
print(f"Error fetching news: {str(e)}") |
|
return [] |
|
|
|
def summarize_news_content(content, model): |
|
prompt_template = """ |
|
Summarize the following news article in a concise manner: |
|
{content} |
|
|
|
Summary: |
|
""" |
|
prompt = ChatPromptTemplate.from_template(prompt_template) |
|
formatted_prompt = prompt.format(content=content) |
|
full_response = generate_chunked_response(model, formatted_prompt, max_tokens=200) |
|
|
|
|
|
summary_parts = full_response.split("Summary:") |
|
if len(summary_parts) > 1: |
|
summary = summary_parts[-1].strip() |
|
else: |
|
summary = full_response.strip() |
|
|
|
|
|
lines = summary.split('\n') |
|
cleaned_lines = [line for line in lines if not line.strip().startswith(("Human:", "Assistant:", "Summary:"))] |
|
cleaned_summary = ' '.join(cleaned_lines).strip() |
|
|
|
return summary, cleaned_summary |
|
|
|
def process_news(query, temperature, top_p, repetition_penalty, news_source): |
|
model = get_model(temperature, top_p, repetition_penalty) |
|
embed = get_embeddings() |
|
|
|
if news_source in website_configs: |
|
articles = fetch_news_from_website(news_source) |
|
else: |
|
return f"Invalid news source selected: {news_source}" |
|
|
|
if not articles: |
|
return f"No news articles found for {news_source}." |
|
|
|
processed_articles = [] |
|
|
|
for article in articles: |
|
try: |
|
|
|
clean_content = BeautifulSoup(article["content"], "html.parser").get_text() |
|
|
|
|
|
if len(clean_content) < 50: |
|
clean_content = article["title"] |
|
|
|
full_summary, cleaned_summary = summarize_news_content(clean_content, model) |
|
relevance_score = calculate_relevance_score(cleaned_summary, model) |
|
|
|
processed_article = { |
|
"published_date": article["published_date"], |
|
"title": article["title"], |
|
"url": article["url"], |
|
"content": clean_content, |
|
"summary": full_summary, |
|
"cleaned_summary": cleaned_summary, |
|
"relevance_score": relevance_score |
|
} |
|
processed_articles.append(processed_article) |
|
except Exception as e: |
|
print(f"Error processing article: {str(e)}") |
|
|
|
if not processed_articles: |
|
return f"Failed to process any news articles from {news_source}. Please try again or check the summarization process." |
|
|
|
|
|
docs = [Document(page_content=article["cleaned_summary"], metadata={ |
|
"source": article["url"], |
|
"title": article["title"], |
|
"published_date": article["published_date"], |
|
"relevance_score": article["relevance_score"] |
|
}) for article in processed_articles] |
|
|
|
try: |
|
if os.path.exists("faiss_database"): |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
database.add_documents(docs) |
|
else: |
|
database = FAISS.from_documents(docs, embed) |
|
|
|
database.save_local("faiss_database") |
|
|
|
|
|
global news_database |
|
news_database = processed_articles |
|
|
|
return f"Processed and added {len(processed_articles)} news articles from {news_source} to the database." |
|
except Exception as e: |
|
return f"Error adding articles to the database: {str(e)}" |
|
|
|
website_configs = { |
|
"Golomt Bank": { |
|
"base_url": "https://golomtbank.com/en/rnews", |
|
"article_selector": 'div.entry-post.gt-box-shadow-2', |
|
"title_selector": 'h2.entry-title', |
|
"date_selector": 'div.entry-date.gt-meta', |
|
"link_selector": 'a', |
|
"content_selector": 'div.entry-content', |
|
"next_page_selector": 'a.next', |
|
"url_prefix": "https://golomtbank.com" |
|
}, |
|
"Bank of America": { |
|
"base_url": "https://newsroom.bankofamerica.com/content/newsroom/press-releases.html?page=1&year=all&category=press-release-categories/corporate-and-financial-news&categTitle=Corporate%20and%20Financial%20News", |
|
"article_selector": 'div.card bg-bank-gray-2', |
|
"title_selector": 'h2.pr-list-head', |
|
"date_selector": 'div.prlist-date', |
|
"link_selector": 'a', |
|
"content_selector": 'div.richtext text', |
|
"next_page_selector": 'a.brand-SystemRight', |
|
"url_prefix": "https://newsroom.bankofamerica.com" |
|
}, |
|
|
|
} |
|
|
|
|
|
|
|
def fetch_articles_from_page(url, config): |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
articles = soup.find_all(config['article_selector'].split('.')[0], class_=config['article_selector'].split('.')[-1]) |
|
return articles, soup |
|
|
|
def extract_articles(articles, config): |
|
article_data = [] |
|
for article in articles: |
|
title_div = article.find(config['title_selector'].split('.')[0], class_=config['title_selector'].split('.')[-1]) |
|
title = title_div.get_text(strip=True) if title_div else "No Title" |
|
|
|
date_div = article.find(config['date_selector'].split('.')[0], class_=config['date_selector'].split('.')[-1]) |
|
date = date_div.get_text(strip=True) if date_div else "No Date" |
|
|
|
link_tag = article.find(config['link_selector']) |
|
link = link_tag['href'] if link_tag else "No Link" |
|
if not link.startswith('http'): |
|
link = config['url_prefix'] + link |
|
|
|
article_response = requests.get(link) |
|
article_response.raise_for_status() |
|
article_soup = BeautifulSoup(article_response.content, 'html.parser') |
|
article_content_div = article_soup.find(config['content_selector'].split('.')[0], class_=config['content_selector'].split('.')[-1]) |
|
article_content = article_content_div.get_text(strip=True) if article_content_div else "No content found" |
|
|
|
article_data.append({ |
|
'title': title, |
|
'date': date, |
|
'link': link, |
|
'content': article_content |
|
}) |
|
return article_data |
|
|
|
def fetch_news_from_website(website_key, num_results=20): |
|
config = website_configs.get(website_key) |
|
if not config: |
|
return f"No configuration found for website: {website_key}" |
|
|
|
base_url = config['base_url'] |
|
current_page_url = base_url |
|
all_articles = [] |
|
|
|
try: |
|
while len(all_articles) < num_results: |
|
print(f"Fetching articles from: {current_page_url}") |
|
articles, soup = fetch_articles_from_page(current_page_url, config) |
|
if not articles: |
|
print("No articles found on this page.") |
|
break |
|
all_articles.extend(extract_articles(articles, config)) |
|
print(f"Total articles fetched so far: {len(all_articles)}") |
|
if len(all_articles) >= num_results: |
|
all_articles = all_articles[:num_results] |
|
break |
|
next_page_link = soup.find(config['next_page_selector']) |
|
if not next_page_link: |
|
print("No next page link found.") |
|
break |
|
current_page_url = next_page_link['href'] |
|
if not current_page_url.startswith('http'): |
|
current_page_url = config['url_prefix'] + current_page_url |
|
|
|
return [ |
|
{ |
|
"published_date": article['date'], |
|
"title": article['title'], |
|
"url": article['link'], |
|
"content": article['content'] |
|
} for article in all_articles |
|
] |
|
except Exception as e: |
|
print(f"Error fetching news from {website_key}: {str(e)}") |
|
return [] |
|
|
|
def export_news_to_excel(): |
|
global news_database |
|
|
|
if not news_database: |
|
return "No articles to export. Please fetch news first." |
|
|
|
print("Exporting the following articles:") |
|
for article in news_database: |
|
print(f"Title: {article['title']}, Score: {article.get('relevance_score', 'N/A')}") |
|
|
|
df = pd.DataFrame(news_database) |
|
|
|
|
|
if 'relevance_score' not in df.columns: |
|
df['relevance_score'] = 0.0 |
|
else: |
|
df['relevance_score'] = pd.to_numeric(df['relevance_score'], errors='coerce').fillna(0.0) |
|
|
|
|
|
if 'cleaned_summary' in df.columns: |
|
df['summary'] = df['cleaned_summary'] |
|
df = df.drop(columns=['cleaned_summary']) |
|
|
|
|
|
columns = ['published_date', 'title', 'url', 'content', 'summary', 'relevance_score'] |
|
df = df[[col for col in columns if col in df.columns]] |
|
|
|
print("Final DataFrame before export:") |
|
print(df[['title', 'relevance_score']]) |
|
|
|
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: |
|
excel_path = tmp.name |
|
df.to_excel(excel_path, index=False, engine='openpyxl') |
|
print(f"Excel file saved to: {excel_path}") |
|
print("Final relevance scores before export:") |
|
for article in news_database: |
|
print(f"Title: {article['title']}, Score: {article.get('relevance_score', 'N/A')}") |
|
|
|
return excel_path |
|
|
|
def calculate_relevance_score(summary, model): |
|
prompt_template = PromptTemplate( |
|
input_variables=["summary"], |
|
template="""You are a financial analyst tasked with providing a relevance score to news summaries. |
|
The score should be based on the financial significance and impact of the news. |
|
|
|
Consider the following factors when assigning relevance: |
|
- Earnings reports and financial performance |
|
- Debt issuance or restructuring |
|
- Mergers, acquisitions, or divestments |
|
- Changes in key leadership (e.g., CEO, CFO) |
|
- Regulatory changes or legal issues affecting the company |
|
- Major product launches or market expansion |
|
- Significant shifts in market share or competitive landscape |
|
- Macroeconomic factors directly impacting the company or industry |
|
- Stock price movements and trading volume changes |
|
- Dividend announcements or changes in capital allocation |
|
- Credit rating changes |
|
- Material financial events (e.g., bankruptcy, major contracts) |
|
|
|
Use the following scoring guide: |
|
- 0.00-0.20: Not relevant to finance or economics |
|
- 0.21-0.40: Slightly relevant, but minimal financial impact |
|
- 0.41-0.60: Moderately relevant, some financial implications |
|
- 0.61-0.80: Highly relevant, significant financial impact |
|
- 0.81-1.00: Extremely relevant, major financial implications |
|
|
|
Provide a score between 0.00 and 1.00, where 0.00 is not relevant at all, and 1.00 is extremely relevant from a financial perspective. |
|
|
|
Summary: {summary} |
|
|
|
Relevance Score:""" |
|
) |
|
|
|
chain = LLMChain(llm=model, prompt=prompt_template) |
|
response = chain.run(summary=summary) |
|
|
|
print(f"Raw relevance score response: {response}") |
|
|
|
try: |
|
|
|
score_match = re.search(r'Relevance Score:\s*(\d+\.\d+)', response) |
|
if score_match: |
|
score = float(score_match.group(1)) |
|
final_score = min(max(score, 0.00), 1.00) |
|
print(f"Processed relevance score: {final_score}") |
|
return final_score |
|
else: |
|
raise ValueError("No relevance score found in the response") |
|
except ValueError as e: |
|
print(f"Error parsing relevance score: {e}") |
|
return 0.00 |
|
|
|
|
|
def rephrase_for_search(query, model): |
|
rephrase_prompt = PromptTemplate( |
|
input_variables=["query"], |
|
template=""" |
|
Rephrase the following conversational query into a concise, search-engine-friendly format. |
|
Remove any conversational elements and focus on the core information need. |
|
Provide ONLY the rephrased query without any explanation or additional text. |
|
|
|
Conversational query: {query} |
|
|
|
Rephrased query:""" |
|
) |
|
|
|
chain = LLMChain(llm=model, prompt=rephrase_prompt) |
|
response = chain.run(query=query).strip() |
|
|
|
|
|
match = re.search(r'^(.*?)(?:\n|$)', response) |
|
if match: |
|
rephrased_query = match.group(1).strip() |
|
else: |
|
rephrased_query = response.strip() |
|
|
|
|
|
rephrased_query = re.sub(r'^Rephrased query:\s*', '', rephrased_query, flags=re.IGNORECASE) |
|
|
|
|
|
if (rephrased_query.lower().startswith(("rephrase", "your task")) or |
|
len(rephrased_query.split()) > len(query.split()) * 2): |
|
|
|
keywords = ' '.join(word for word in query.lower().split() if word not in {'how', 'did', 'the', 'in', 'a', 'an', 'and', 'or', 'but', 'is', 'are', 'was', 'were'}) |
|
return keywords |
|
|
|
return rephrased_query |
|
|
|
def ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss): |
|
global conversation_history |
|
|
|
if not question: |
|
return "Please enter a question." |
|
|
|
model = get_model(temperature, top_p, repetition_penalty) |
|
embed = get_embeddings() |
|
|
|
if os.path.exists("faiss_database"): |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
else: |
|
database = None |
|
|
|
|
|
if web_search: |
|
original_query = question |
|
rephrased_query = rephrase_for_search(original_query, model) |
|
print(f"Original query: {original_query}") |
|
print(f"Rephrased query: {rephrased_query}") |
|
|
|
if rephrased_query == original_query: |
|
print("Warning: Query was not rephrased. Using original query for search.") |
|
|
|
search_results = google_search(rephrased_query) |
|
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]] |
|
|
|
if database is None: |
|
database = FAISS.from_documents(web_docs, embed) |
|
else: |
|
database.add_documents(web_docs) |
|
|
|
database.save_local("faiss_database") |
|
|
|
context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs]) |
|
|
|
prompt_template = """ |
|
Answer the question based on the following web search results: |
|
Web Search Results: |
|
{context} |
|
Original Question: {original_question} |
|
Rephrased Search Query: {rephrased_query} |
|
If the web search results don't contain relevant information, state that the information is not available in the search results. |
|
Provide a concise and direct answer to the original question without mentioning the web search or these instructions: |
|
""" |
|
prompt_val = ChatPromptTemplate.from_template(prompt_template) |
|
formatted_prompt = prompt_val.format(context=context_str, original_question=question, rephrased_query=rephrased_query) |
|
|
|
elif google_news_rss: |
|
if database is None: |
|
return "No news articles available. Please fetch news articles first." |
|
|
|
retriever = database.as_retriever() |
|
relevant_docs = retriever.get_relevant_documents(question) |
|
context_str = "\n".join([f"Title: {doc.metadata.get('title', 'N/A')}\nURL: {doc.metadata.get('source', 'N/A')}\nSummary: {doc.page_content}" for doc in relevant_docs]) |
|
|
|
prompt_template = """ |
|
Answer the question based on the following news summaries: |
|
News Summaries: |
|
{context} |
|
Current Question: {question} |
|
If the news summaries don't contain relevant information, state that the information is not available in the news articles. |
|
Provide a concise and direct answer to the question without mentioning the news summaries or these instructions: |
|
""" |
|
prompt_val = ChatPromptTemplate.from_template(prompt_template) |
|
formatted_prompt = prompt_val.format(context=context_str, question=question) |
|
else: |
|
if database is None: |
|
return "No documents available. Please upload documents, enable web search, or fetch news articles to answer questions." |
|
|
|
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history]) |
|
|
|
|
|
retriever = database.as_retriever() |
|
relevant_docs = retriever.get_relevant_documents(question) |
|
doc_context = "\n".join([doc.page_content for doc in relevant_docs]) |
|
|
|
|
|
context_str = f"Document context:\n{doc_context}\n\nConversation history:\n{history_str}" |
|
|
|
prompt_val = ChatPromptTemplate.from_template(prompt) |
|
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question) |
|
|
|
full_response = generate_chunked_response(model, formatted_prompt) |
|
|
|
|
|
answer_patterns = [ |
|
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", |
|
r"Provide a concise and direct answer to the question without mentioning the news summaries or these instructions:", |
|
r"Provide a concise and direct answer to the question:", |
|
r"Answer:", |
|
r"Provide a concise and direct answer to the original question without mentioning the web search or these instructions:" |
|
] |
|
|
|
for pattern in answer_patterns: |
|
match = re.split(pattern, full_response, flags=re.IGNORECASE) |
|
if len(match) > 1: |
|
answer = match[-1].strip() |
|
break |
|
else: |
|
|
|
answer = full_response.strip() |
|
|
|
if not web_search and not google_news_rss: |
|
memory_database[question] = answer |
|
conversation_history = manage_conversation_history(question, answer, conversation_history) |
|
|
|
return answer |
|
|
|
def extract_db_to_excel(): |
|
embed = get_embeddings() |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
|
|
documents = database.docstore._dict.values() |
|
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] |
|
df = pd.DataFrame(data) |
|
|
|
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: |
|
excel_path = tmp.name |
|
df.to_excel(excel_path, index=False) |
|
|
|
return excel_path |
|
|
|
def export_memory_db_to_excel(): |
|
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()] |
|
df_memory = pd.DataFrame(data) |
|
|
|
data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history] |
|
df_history = pd.DataFrame(data_history) |
|
|
|
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: |
|
excel_path = tmp.name |
|
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer: |
|
df_memory.to_excel(writer, sheet_name='Memory Database', index=False) |
|
df_history.to_excel(writer, sheet_name='Conversation History', index=False) |
|
|
|
return excel_path |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Chat with your PDF documents and News") |
|
|
|
with gr.Row(): |
|
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) |
|
update_button = gr.Button("Update Vector Store") |
|
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False) |
|
parser_dropdown = gr.Dropdown( |
|
choices=["PyPDF", "PDFMiner", "Camelot"], |
|
label="Select Parser", |
|
value="PyPDF" |
|
) |
|
|
|
update_output = gr.Textbox(label="Update Status") |
|
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter, parser_dropdown], outputs=update_output) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
chatbot = gr.Chatbot(label="Conversation") |
|
question_input = gr.Textbox(label="Ask a question about your documents or news") |
|
submit_button = gr.Button("Submit") |
|
with gr.Column(scale=1): |
|
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) |
|
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) |
|
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) |
|
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False) |
|
google_news_rss_checkbox = gr.Checkbox(label="Google News RSS", value=False) |
|
|
|
def chat(question, history, temperature, top_p, repetition_penalty, web_search, google_news_rss): |
|
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss) |
|
history.append((question, answer)) |
|
return "", history |
|
|
|
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox, google_news_rss_checkbox], outputs=[question_input, chatbot]) |
|
|
|
with gr.Row(): |
|
news_query_input = gr.Textbox(label="News Query") |
|
news_source_dropdown = gr.Dropdown( |
|
choices=list(website_configs.keys()), |
|
label="Select News Source", |
|
value=list(website_configs.keys())[0] |
|
) |
|
fetch_news_button = gr.Button("Fetch News") |
|
|
|
news_fetch_output = gr.Textbox(label="News Fetch Status") |
|
|
|
def fetch_news(query, temperature, top_p, repetition_penalty, news_source): |
|
return process_news(query, temperature, top_p, repetition_penalty, news_source) |
|
|
|
fetch_news_button.click( |
|
fetch_news, |
|
inputs=[news_query_input, temperature_slider, top_p_slider, repetition_penalty_slider, news_source_dropdown], |
|
outputs=news_fetch_output |
|
) |
|
|
|
extract_button = gr.Button("Extract Database to Excel") |
|
excel_output = gr.File(label="Download Excel File") |
|
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output) |
|
|
|
export_memory_button = gr.Button("Export Memory Database to Excel") |
|
memory_excel_output = gr.File(label="Download Memory Excel File") |
|
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output) |
|
|
|
export_news_button = gr.Button("Download News Excel File") |
|
news_excel_output = gr.File(label="Download News Excel File") |
|
export_news_button.click(export_news_to_excel, inputs=[], outputs=news_excel_output) |
|
|
|
clear_button = gr.Button("Clear Cache") |
|
clear_output = gr.Textbox(label="Cache Status") |
|
clear_button.click(clear_cache, inputs=[], outputs=clear_output) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |