Shreyas094's picture
Update app.py
f36a838 verified
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import logging
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct"
]
MODEL_TOKEN_LIMITS = {
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
"mistralai/Mistral-Nemo-Instruct-2407": 32768,
"meta-llama/Meta-Llama-3.1-8B-Instruct": 8192,
"meta-llama/Meta-Llama-3.1-70B-Instruct": 8192,
}
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured, factual.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def chatbot_interface(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
if not message.strip():
return "", history
history = history + [(message, "")]
try:
for response in respond(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
history[-1] = (message, response)
yield history
except gr.CancelledError:
yield history
except Exception as e:
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
yield history
def retry_last_response(history, model, temperature, num_calls, use_embeddings, system_prompt):
if not history:
return history
last_user_msg = history[-1][0]
history = history[:-1] # Remove the last response
return chatbot_interface(last_user_msg, history, model, temperature, num_calls, use_embeddings, system_prompt)
def respond(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Use Embeddings: {use_embeddings}")
logging.info(f"System Prompt: {system_prompt}")
try:
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature, use_embeddings=use_embeddings, system_prompt=system_prompt):
response = f"{main_content}\n\n{sources}"
first_line = response.split('\n')[0] if response else ''
yield response
except Exception as e:
logging.error(f"Error with {model}: {str(e)}")
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
return FAISS.from_documents(documents, embed)
def get_response_with_search(query, model, num_calls=3, temperature=0.2, use_embeddings=True, system_prompt=DEFAULT_SYSTEM_PROMPT):
search_results = duckduckgo_search(query)
if use_embeddings:
web_search_database = create_web_search_vectors(search_results)
if not web_search_database:
yield "No web search results available. Please try again.", ""
return
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
else:
context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results])
prompt = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources with their URLs used in your response."""
# Use Hugging Face API
client = InferenceClient(model, token=huggingface_token)
# Calculate input tokens (this is an approximation, you might need a more accurate method)
input_tokens = len(prompt.split()) // 4
# Get the token limit for the current model
model_token_limit = MODEL_TOKEN_LIMITS.get(model, 8192) # Default to 8192 if model not found
# Calculate max_new_tokens
max_new_tokens = min(model_token_limit - input_tokens, 6500) # Cap at 4096 to be safe
main_content = ""
for i in range(num_calls):
try:
response = client.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
max_tokens=max_new_tokens,
temperature=temperature,
stream=False,
top_p=0.8,
)
# Log the raw response for debugging
logging.info(f"Raw API response: {response}")
# Check if the response is a string (which might be an error message)
if isinstance(response, str):
logging.error(f"API returned an unexpected string response: {response}")
yield f"An error occurred: {response}", ""
return
# If it's not a string, assume it's the expected object structure
if hasattr(response, 'choices') and response.choices:
for choice in response.choices:
if hasattr(choice, 'message') and hasattr(choice.message, 'content'):
chunk = choice.message.content
main_content += chunk
yield main_content, "" # Yield partial main content without sources
else:
logging.error(f"Unexpected response structure: {response}")
yield "An unexpected error occurred. Please try again.", ""
except Exception as e:
logging.error(f"Error in API call: {str(e)}")
yield f"An error occurred: {str(e)}", ""
return
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Fine-tune chatbox size */
"""
def initial_conversation():
return [
(None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
"1. Ask me any question, and I'll search the web for information.\n"
"2. You can adjust the system prompt for fine-tuned responses, whether to use embeddings, and the temperature.\n"
"To get started, ask me a question!")
]
demo = gr.ChatInterface(
respond,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Embeddings", value=False),
gr.Textbox(label="System Prompt", lines=5, value=DEFAULT_SYSTEM_PROMPT),
],
title="AI-powered Web Search Assistant",
description="Ask questions and get answers from web search results.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Can you explain the basics of quantum computing?"],
["What are the current global economic trends?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder="Ask a question", container=False, scale=7),
chatbot = gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
value=initial_conversation()
)
)
if __name__ == "__main__":
demo.launch(share=True)