import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login # Directly assign your Hugging Face token here hf_token = "your_hugging_face_api_token" # Log in to Hugging Face login(token=hf_token) # Load the Mixtral-8x7B-Instruct model and tokenizer with authorization header model_name = 'mistralai/Mistral-7B-Instruct-v0.3' headers = {"Authorization": f"Bearer {hf_token}"} # Ensure sentencepiece is installed try: import sentencepiece except ImportError: raise ImportError("The sentencepiece library is required for this tokenizer. Please install it with `pip install sentencepiece`.") tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token) # Check if a GPU is available and if not, fall back to CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Example text input text_input = "How did Tesla perform in Q1 2024?" # Tokenize the input text inputs = tokenizer(text_input, return_tensors="pt").to(device) # Generate a response outputs = model.generate(**inputs, max_length=150, temperature=0.7, top_p=0.9, top_k=50) # Decode the generated tokens to a readable string response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Print the response print(response)