import os import json import re import gradio as gr import pandas as pd import requests import random import urllib.parse import spacy from sklearn.metrics.pairwise import cosine_similarity import numpy as np from typing import List, Dict from tempfile import NamedTemporaryFile from bs4 import BeautifulSoup from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain_core.prompts import ChatPromptTemplate from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain_core.output_parsers import StrOutputParser from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceHub from langchain_core.documents import Document from sentence_transformers import SentenceTransformer from llama_parse import from llama_cpp import Llama from llama_cpp_agent.llm_agent import LlamaCppAgent from llama_cpp_agent.messages_formatter import MessagesFormatterType from llama_cpp_agent.providers.llama_cpp_endpoint_provider import LlamaCppEndpointSettings huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY") # Load SentenceTransformer model sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') def load_spacy_model(): try: # Try to load the model return spacy.load("en_core_web_sm") except OSError: # If loading fails, download the model os.system("python -m spacy download en_core_web_sm") # Try loading again return spacy.load("en_core_web_sm") # Load spaCy model nlp = load_spacy_model() class EnhancedContextDrivenChatbot: def __init__(self, history_size: int = 10, max_history_chars: int = 5000): self.history = [] self.history_size = history_size self.max_history_chars = max_history_chars self.entity_tracker = {} self.conversation_context = "" self.model = None self.last_instructions = None def add_to_history(self, text: str): self.history.append(text) while len(' '.join(self.history)) > self.max_history_chars or len(self.history) > self.history_size: self.history.pop(0) # Update entity tracker doc = nlp(text) for ent in doc.ents: if ent.label_ not in self.entity_tracker: self.entity_tracker[ent.label_] = set() self.entity_tracker[ent.label_].add(ent.text) # Update conversation context self.conversation_context += f" {text}" self.conversation_context = ' '.join(self.conversation_context.split()[-100:]) # Keep last 100 words def get_context(self): return self.conversation_context def is_follow_up_question(self, question): doc = nlp(question.lower()) follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them']) return any(token.text in follow_up_indicators for token in doc) or question.strip().startswith("What about") def extract_topics(self, text): doc = nlp(text) return [chunk.text for chunk in doc.noun_chunks] def extract_instructions(self, text): instruction_patterns = [ r"(.*?),?\s*(?:please\s+)?(provide\s+(?:me\s+)?a\s+.*?|give\s+(?:me\s+)?a\s+.*?|create\s+a\s+.*?)$", r"(.*?),?\s*(?:please\s+)?(summarize|analyze|explain|describe|elaborate\s+on).*$", r"(.*?),?\s*(?:please\s+)?(in\s+detail|briefly|concisely).*$", ] for pattern in instruction_patterns: match = re.match(pattern, text, re.IGNORECASE) if match: return match.group(1).strip(), match.group(2).strip() return text, None def get_most_relevant_context(self, question): if not self.history: return question # Create a combined context from history combined_context = self.get_context() # Get embeddings context_embedding = sentence_model.encode([combined_context])[0] question_embedding = sentence_model.encode([question])[0] # Calculate similarity similarity = cosine_similarity([context_embedding], [question_embedding])[0][0] # If similarity is high, it's likely a follow-up question if similarity > 0.5: # This threshold can be adjusted return f"{combined_context} {question}" # Otherwise, it might be a new topic return question def rephrase_query(self, question, instructions=None): if not self.model: return question # Return original question if no model is available instruction_prompt = f"Instructions: {instructions}\n" if instructions else "" prompt = f""" Given the conversation context, the current question, and any provided instructions, rephrase the question to include relevant context and rephrase it to more search-engine-friendly query: Conversation context: {self.get_context()} Current question: {question} {instruction_prompt} Rephrased question: """ rephrased_question = generate_chunked_response(self.model, prompt) return rephrased_question.strip() def process_question(self, question): core_question, instructions = self.extract_instructions(question) if self.is_follow_up_question(core_question): contextualized_question = self.get_most_relevant_context(core_question) contextualized_question = self.rephrase_query(contextualized_question, instructions) else: contextualized_question = core_question topics = self.extract_topics(contextualized_question) self.add_to_history(question) self.last_instructions = instructions return contextualized_question, topics, self.entity_tracker, instructions # Initialize LlamaParse llama_parser = LlamaParse( api_key=llama_cloud_api_key, result_type="markdown", num_workers=4, verbose=True, language="en", ) def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]: """Loads and splits the document into pages.""" if parser == "pypdf": loader = PyPDFLoader(file.name) return loader.load_and_split() elif parser == "llamaparse": try: documents = llama_parser.load_data(file.name) return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents] except Exception as e: print(f"Error using Llama Parse: {str(e)}") print("Falling back to PyPDF parser") loader = PyPDFLoader(file.name) return loader.load_and_split() else: raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.") def update_vectors(files, parser): if not files: return "Please upload at least one PDF file." embed = get_embeddings() total_chunks = 0 all_data = [] for file in files: data = load_document(file, parser) all_data.extend(data) total_chunks += len(data) if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) database.add_documents(all_data) else: database = FAISS.from_documents(all_data, embed) database.save_local("faiss_database") return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}." def get_embeddings(): return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") def clear_cache(): if os.path.exists("faiss_database"): os.remove("faiss_database") return "Cache cleared successfully." else: return "No cache to clear." def get_model(temperature, top_p, repetition_penalty): return HuggingFaceHub( repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={ "temperature": temperature, "top_p": top_p, "repetition_penalty": repetition_penalty, "max_length": 800 }, huggingfacehub_api_token=huggingface_token ) MAX_PROMPT_CHARS = 20000 # Adjust based on your model's limitations def chunk_text(text: str, max_chunk_size: int = 800) -> List[str]: chunks = [] current_chunk = "" for sentence in re.split(r'(?<=[.!?])\s+', text): if len(current_chunk) + len(sentence) > max_chunk_size: chunks.append(current_chunk.strip()) current_chunk = sentence else: current_chunk += " " + sentence if current_chunk: chunks.append(current_chunk.strip()) return chunks def get_most_relevant_chunks(question: str, chunks: List[str], top_k: int = 3) -> List[str]: question_embedding = sentence_model.encode([question])[0] chunk_embeddings = sentence_model.encode(chunks) similarities = cosine_similarity([question_embedding], chunk_embeddings)[0] top_indices = np.argsort(similarities)[-top_k:] return [chunks[i] for i in top_indices] def generate_chunked_response(model, prompt, max_tokens=800, max_chunks=5): full_response = "" for i in range(max_chunks): try: chunk = model(prompt + full_response, max_new_tokens=max_tokens) chunk = chunk.strip() if chunk.endswith((".", "!", "?")): full_response += chunk break full_response += chunk except Exception as e: print(f"Error in generate_chunked_response: {e}") break return full_response.strip() def extract_text_from_webpage(html): soup = BeautifulSoup(html, 'html.parser') for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = '\n'.join(chunk for chunk in chunks if chunk) return text _useragent_list = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", ] def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): escaped_term = urllib.parse.quote_plus(term) start = 0 all_results = [] max_chars_per_page = 8000 print(f"Starting Google search for term: '{term}'") with requests.Session() as session: while start < num_results: try: user_agent = random.choice(_useragent_list) headers = { 'User-Agent': user_agent } resp = session.get( url="https://www.google.com/search", headers=headers, params={ "q": term, "num": num_results - start, "hl": lang, "start": start, "safe": safe, }, timeout=timeout, verify=ssl_verify, ) resp.raise_for_status() print(f"Successfully retrieved search results page (start={start})") except requests.exceptions.RequestException as e: print(f"Error retrieving search results: {e}") break soup = BeautifulSoup(resp.text, "html.parser") result_block = soup.find_all("div", attrs={"class": "g"}) if not result_block: print("No results found on this page") break print(f"Found {len(result_block)} results on this page") for result in result_block: link = result.find("a", href=True) if link: link = link["href"] print(f"Processing link: {link}") try: webpage = session.get(link, headers=headers, timeout=timeout) webpage.raise_for_status() visible_text = extract_text_from_webpage(webpage.text) if len(visible_text) > max_chars_per_page: visible_text = visible_text[:max_chars_per_page] + "..." all_results.append({"link": link, "text": visible_text}) print(f"Successfully extracted text from {link}") except requests.exceptions.RequestException as e: print(f"Error retrieving webpage content: {e}") all_results.append({"link": link, "text": None}) else: print("No link found for this result") all_results.append({"link": None, "text": None}) start += len(result_block) print(f"Search completed. Total results: {len(all_results)}") if not all_results: print("No search results found. Returning a default message.") return [{"link": None, "text": "No information found in the web search results."}] return all_results def estimate_tokens(text): return len(text.split()) def truncate_text(text, max_tokens): words = text.split() if len(words) <= max_tokens: return text return ' '.join(words[:max_tokens]) def rerank_documents(query: str, documents: List[Document], top_k: int = 5) -> List[Document]: query_embedding = sentence_model.encode([query])[0] doc_embeddings = sentence_model.encode([doc.page_content for doc in documents]) similarities = cosine_similarity([query_embedding], doc_embeddings)[0] ranked_indices = similarities.argsort()[::-1][:top_k] return [documents[i] for i in ranked_indices] def prepare_context(query: str, documents: List[Document], max_tokens: int) -> str: reranked_docs = rerank_documents(query, documents) context = "" for doc in reranked_docs: doc_content = f"Source: {doc.metadata.get('source', 'Unknown')}\nContent: {doc.page_content}\n\n" if estimate_tokens(context + doc_content) > max_tokens: break context += doc_content return truncate_text(context, max_tokens) # Initialize LlamaCppAgent def initialize_llama_cpp_agent(): main_model = LlamaCppEndpointSettings( completions_endpoint_url="http://127.0.0.1:8080/completion" ) llama_cpp_agent = LlamaCppAgent( main_model, debug_output=False, system_prompt="You are an AI assistant designed to help with RAG tasks.", predefined_messages_formatter_type=MessagesFormatterType.CHATML ) return llama_cpp_agent # Modify the ask_question function to use LlamaCppAgent def ask_question(question, temperature, top_p, repetition_penalty, web_search, chatbot, user_instructions): if not question: return "Please enter a question." llama_cpp_agent = initialize_llama_cpp_agent() model = get_model(temperature, top_p, repetition_penalty) # Update the chatbot's model chatbot.model = model embed = get_embeddings() if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) else: database = None max_attempts = 3 max_input_tokens = 20000 max_output_tokens = 800 if web_search: contextualized_question, topics, entity_tracker, _ = chatbot.process_question(question) try: search_results = google_search(contextualized_question, num_results=5) except Exception as e: print(f"Error in web search: {e}") return f"I apologize, but I encountered an error while searching for information: {str(e)}" all_answers = [] for attempt in range(max_attempts): try: web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]] if not web_docs: return "I'm sorry, but I couldn't find any relevant information from the web search." if database is None: database = FAISS.from_documents(web_docs, embed) else: database.add_documents(web_docs) database.save_local("faiss_database") context_str = prepare_context(contextualized_question, web_docs, max_input_tokens // 2) instruction_prompt = f"User Instructions: {user_instructions}\n" if user_instructions else "" prompt_template = f""" Answer the question based on the following web search results, conversation context, entity information, and user instructions: Web Search Results: {{context}} Conversation Context: {{conv_context}} Current Question: {{question}} Topics: {{topics}} Entity Information: {{entities}} {instruction_prompt} Provide a concise and relevant answer to the question. """ current_conv_context = truncate_text(chatbot.get_context(), max_input_tokens // 4) current_topics = topics[:5] current_entities = {k: list(v)[:3] for k, v in entity_tracker.items()} formatted_prompt = prompt_template.format( context=context_str, conv_context=current_conv_context, question=question, topics=", ".join(current_topics), entities=json.dumps(current_entities) ) if estimate_tokens(formatted_prompt) > max_input_tokens: formatted_prompt = truncate_text(formatted_prompt, max_input_tokens) try: # Use LlamaCppAgent for initial response generation initial_response = llama_cpp_agent.get_chat_response(formatted_prompt, temperature=temperature) # Use generate_chunked_response for further refinement if needed full_response = generate_chunked_response(model, initial_response, max_tokens=max_output_tokens) answer = extract_answer(full_response, user_instructions) all_answers.append(answer) break except Exception as e: print(f"Error in response generation: {e}") if attempt == max_attempts - 1: all_answers.append(f"I apologize, but I encountered an error while generating the response. Please try again with a simpler question.") except Exception as e: print(f"Error in ask_question (attempt {attempt + 1}): {e}") if attempt == max_attempts - 1: all_answers.append(f"I apologize, but an unexpected error occurred. Please try again with a different question or check your internet connection.") answer = "\n\n".join(all_answers) sources = set(doc.metadata['source'] for doc in web_docs) sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources) answer += sources_section chatbot.add_to_history(answer) return answer else: # PDF document chat for attempt in range(max_attempts): try: if database is None: return "No documents available. Please upload PDF documents to answer questions." retriever = database.as_retriever(search_kwargs={"k": 5}) relevant_docs = retriever.get_relevant_documents(question) context_str = prepare_context(question, relevant_docs, max_input_tokens // 2) instruction_prompt = f"User Instructions: {user_instructions}\n" if user_instructions else "" prompt_template = f""" Answer the question based on the following context from the PDF document: Context: {{context}} Question: {{question}} {instruction_prompt} Provide a summarized and direct answer to the question. """ formatted_prompt = prompt_template.format(context=context_str, question=question) if estimate_tokens(formatted_prompt) > max_input_tokens: formatted_prompt = truncate_text(formatted_prompt, max_input_tokens) try: # Use LlamaCppAgent for initial response generation initial_response = llama_cpp_agent.get_chat_response(formatted_prompt, temperature=temperature) # Use generate_chunked_response for further refinement if needed full_response = generate_chunked_response(model, initial_response, max_tokens=max_output_tokens) answer = extract_answer(full_response, user_instructions) return answer except Exception as e: print(f"Error in response generation: {e}") if attempt == max_attempts - 1: return f"I apologize, but I encountered an error while generating the response. Please try again with a simpler question." except Exception as e: print(f"Error in ask_question (attempt {attempt + 1}): {e}") if attempt == max_attempts - 1: return f"I apologize, but an unexpected error occurred. Please try again with a different question." return "An unexpected error occurred. Please try again later." def extract_answer(full_response, instructions=None): answer_patterns = [ r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", r"Provide a concise and direct answer to the question:", r"Provide a concise and relevant answer to the question.", r"Answer:", r"Provide a summarized and direct answer to the question.", r"If the context doesn't contain relevant information, state that the information is not available in the document.", r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:", r"Do not include any source information in your answer." ] for pattern in answer_patterns: match = re.split(pattern, full_response, flags=re.IGNORECASE) if len(match) > 1: full_response = match[-1].strip() break # Remove any remaining instruction-like phrases cleanup_patterns = [ r"without mentioning the web search or these instructions\.", r"Do not include any source information in your answer\.", r"If the context doesn't contain relevant information, state that the information is not available in the document\." ] for pattern in cleanup_patterns: full_response = re.sub(pattern, "", full_response, flags=re.IGNORECASE).strip() # Remove the user instructions if present if instructions: instruction_pattern = rf"User Instructions:\s*{re.escape(instructions)}.*?\n" full_response = re.sub(instruction_pattern, "", full_response, flags=re.IGNORECASE | re.DOTALL) return full_response.strip() # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Enhanced PDF Document Chat and Web Search") with gr.Row(): file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf") update_button = gr.Button("Upload PDF") update_output = gr.Textbox(label="Update Status") update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output) with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot(label="Conversation") question_input = gr.Textbox(label="Ask a question") instructions_input = gr.Textbox(label="Instructions for response (optional)", placeholder="Enter any specific instructions for the response here") submit_button = gr.Button("Submit") with gr.Column(scale=1): temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False) enhanced_context_driven_chatbot = EnhancedContextDrivenChatbot() # Update the chat function to use the modified ask_question function def chat(question, history, temperature, top_p, repetition_penalty, web_search, user_instructions): answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, enhanced_context_driven_chatbot, user_instructions) history.append((question, answer)) return "", history submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox, instructions_input], outputs=[question_input, chatbot]) clear_button = gr.Button("Clear Cache") clear_output = gr.Textbox(label="Cache Status") clear_button.click(clear_cache, inputs=[], outputs=clear_output) if __name__ == "__main__": demo.launch()