File size: 941 Bytes
8f4e927
753d9d8
664e897
753d9d8
 
a65ba38
753d9d8
 
34054e0
753d9d8
 
a65ba38
753d9d8
b38068f
a65ba38
 
8f4e927
 
34054e0
753d9d8
8f4e927
34054e0
753d9d8
a65ba38
 
753d9d8
34054e0
 
753d9d8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Path to the locally saved quantized model directory
model_path = '/path/to/your/quantized_model_directory'

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load quantized model
quantized_model = AutoModelForCausalLM.from_pretrained(model_path)

# Check if a GPU is available and move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
quantized_model.to(device)

# Example text input
text_input = "How did Tesla perform in Q1 2024?"

# Tokenize input
inputs = tokenizer(text_input, return_tensors="pt").to(device)

# Generate response
outputs = quantized_model.generate(**inputs, max_length=150, do_sample=False)

# Decode generated tokens to readable string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

# Print generated response
print(f"Generated response: {response}")