Shreyas094's picture
Update app.py
b9eb6ba verified
raw
history blame
10.3 kB
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import logging
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct"
]
MODEL_TOKEN_LIMITS = {
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
"mistralai/Mistral-Nemo-Instruct-2407": 32768,
"meta-llama/Meta-Llama-3.1-8B-Instruct": 8192,
"meta-llama/Meta-Llama-3.1-70B-Instruct": 8192,
}
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured, factual."""
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def chatbot_interface(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
if not message.strip():
return "", history
history = history + [(message, "")]
try:
for response in respond(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
history[-1] = (message, response)
yield history
except gr.CancelledError:
yield history
except Exception as e:
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
yield history
def retry_last_response(history, model, temperature, num_calls, use_embeddings, system_prompt):
if not history:
return history
last_user_msg = history[-1][0]
history = history[:-1] # Remove the last response
return chatbot_interface(last_user_msg, history, model, temperature, num_calls, use_embeddings, system_prompt)
def respond(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Use Embeddings: {use_embeddings}")
logging.info(f"System Prompt: {system_prompt}")
try:
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature, use_embeddings=use_embeddings, system_prompt=system_prompt):
response = f"{main_content}\n\n{sources}"
first_line = response.split('\n')[0] if response else ''
yield response
except Exception as e:
logging.error(f"Error with {model}: {str(e)}")
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
return FAISS.from_documents(documents, embed)
def get_response_with_search(query, model, num_calls=3, temperature=0.2, use_embeddings=True, system_prompt=DEFAULT_SYSTEM_PROMPT):
search_results = duckduckgo_search(query)
if use_embeddings:
web_search_database = create_web_search_vectors(search_results)
if not web_search_database:
yield "No web search results available. Please try again.", ""
return
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
else:
context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results])
prompt = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
# Use Hugging Face API
client = InferenceClient(model, token=huggingface_token)
# Calculate input tokens (this is an approximation, you might need a more accurate method)
input_tokens = len(prompt.split())
# Get the token limit for the current model
model_token_limit = MODEL_TOKEN_LIMITS.get(model, 8192) # Default to 8192 if model not found
# Calculate max_new_tokens
max_new_tokens = min(model_token_limit - input_tokens, 4096) # Cap at 4096 to be safe
main_content = ""
for i in range(num_calls):
try:
response = client.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
max_tokens=max_new_tokens,
temperature=temperature,
stream=False,
)
# Log the raw response for debugging
logging.info(f"Raw API response: {response}")
# Check if the response is a string (which might be an error message)
if isinstance(response, str):
logging.error(f"API returned an unexpected string response: {response}")
yield f"An error occurred: {response}", ""
return
# If it's not a string, assume it's the expected object structure
if hasattr(response, 'choices') and response.choices:
for choice in response.choices:
if hasattr(choice, 'message') and hasattr(choice.message, 'content'):
chunk = choice.message.content
main_content += chunk
yield main_content, "" # Yield partial main content without sources
else:
logging.error(f"Unexpected response structure: {response}")
yield "An unexpected error occurred. Please try again.", ""
except Exception as e:
logging.error(f"Error in API call: {str(e)}")
yield f"An error occurred: {str(e)}", ""
return
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Fine-tune chatbox size */
"""
def initial_conversation():
return [
(None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
"1. Ask me any question, and I'll search the web for information.\n"
"2. You can adjust the model, temperature, number of API calls, whether to use embeddings, and the system prompt for fine-tuned responses.\n"
"3. For any queries, feel free to reach out @[email protected] or discord - shreyas094\n\n"
"To get started, ask me a question!")
]
demo = gr.ChatInterface(
respond,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Embeddings", value=True),
gr.Textbox(label="System Prompt", lines=5, value=DEFAULT_SYSTEM_PROMPT),
],
title="AI-powered Web Search Assistant",
description="Ask questions and get answers from web search results.",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_accent_dark="#1b0f0f",
border_color_primary_dark="#1b0f0f",
background_fill_secondary_dark="#0c0505",
color_accent_soft_dark="transparent",
code_background_fill_dark="#140b0b"
),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Can you explain the basics of quantum computing?"],
["What are the current global economic trends?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder="Ask a question", container=False, scale=7),
chatbot = gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
value=initial_conversation()
)
)
if __name__ == "__main__":
demo.launch(share=True)