|
import os |
|
import json |
|
import re |
|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
import random |
|
import urllib.parse |
|
from tempfile import NamedTemporaryFile |
|
from typing import List |
|
from bs4 import BeautifulSoup |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough |
|
from langchain_core.documents import Document |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
|
|
|
|
memory_database = {} |
|
conversation_history = [] |
|
|
|
def load_and_split_document_basic(file): |
|
"""Loads and splits the document into pages.""" |
|
loader = PyPDFLoader(file.name) |
|
data = loader.load_and_split() |
|
return data |
|
|
|
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]: |
|
"""Loads and splits the document into chunks.""" |
|
loader = PyPDFLoader(file.name) |
|
pages = loader.load() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len, |
|
) |
|
|
|
chunks = text_splitter.split_documents(pages) |
|
return chunks |
|
|
|
def get_embeddings(): |
|
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
def create_or_update_database(data, embeddings): |
|
if os.path.exists("faiss_database"): |
|
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) |
|
db.add_documents(data) |
|
else: |
|
db = FAISS.from_documents(data, embeddings) |
|
db.save_local("faiss_database") |
|
|
|
def clear_cache(): |
|
if os.path.exists("faiss_database"): |
|
os.remove("faiss_database") |
|
return "Cache cleared successfully." |
|
else: |
|
return "No cache to clear." |
|
|
|
def get_similarity(text1, text2): |
|
vectorizer = TfidfVectorizer().fit_transform([text1, text2]) |
|
return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0] |
|
|
|
prompt = """ |
|
Answer the question based on the following information: |
|
|
|
Conversation History: |
|
{history} |
|
|
|
Context from documents: |
|
{context} |
|
|
|
Current Question: {question} |
|
|
|
If the question is referring to the conversation history, use that information to answer. |
|
If the question is not related to the conversation history, use the context from documents to answer. |
|
If you don't have enough information to answer, say so. |
|
|
|
Provide a concise and direct answer to the question: |
|
""" |
|
|
|
def get_model(temperature, top_p, repetition_penalty): |
|
return HuggingFaceHub( |
|
repo_id="mistralai/Mistral-7B-Instruct-v0.3", |
|
model_kwargs={ |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"repetition_penalty": repetition_penalty, |
|
"max_length": 1000 |
|
}, |
|
huggingfacehub_api_token=huggingface_token |
|
) |
|
|
|
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): |
|
full_response = "" |
|
for i in range(max_chunks): |
|
chunk = model(prompt + full_response, max_new_tokens=max_tokens) |
|
chunk = chunk.strip() |
|
if chunk.endswith((".", "!", "?")): |
|
full_response += chunk |
|
break |
|
full_response += chunk |
|
return full_response.strip() |
|
|
|
def manage_conversation_history(question, answer, history, max_history=5): |
|
history.append({"question": question, "answer": answer}) |
|
if len(history) > max_history: |
|
history.pop(0) |
|
return history |
|
|
|
def is_related_to_history(question, history, threshold=0.3): |
|
if not history: |
|
return False |
|
history_text = " ".join([f"{h['question']} {h['answer']}" for h in history]) |
|
similarity = get_similarity(question, history_text) |
|
return similarity > threshold |
|
|
|
def extract_text_from_webpage(html): |
|
soup = BeautifulSoup(html, 'html.parser') |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
return text |
|
|
|
_useragent_list = [ |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
] |
|
|
|
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): |
|
escaped_term = urllib.parse.quote_plus(term) |
|
start = 0 |
|
all_results = [] |
|
max_chars_per_page = 8000 |
|
|
|
print(f"Starting Google search for term: '{term}'") |
|
|
|
with requests.Session() as session: |
|
while start < num_results: |
|
try: |
|
user_agent = random.choice(_useragent_list) |
|
headers = { |
|
'User-Agent': user_agent |
|
} |
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers=headers, |
|
params={ |
|
"q": term, |
|
"num": num_results - start, |
|
"hl": lang, |
|
"start": start, |
|
"safe": safe, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
print(f"Successfully retrieved search results page (start={start})") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error retrieving search results: {e}") |
|
break |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
if not result_block: |
|
print("No results found on this page") |
|
break |
|
|
|
print(f"Found {len(result_block)} results on this page") |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
print(f"Processing link: {link}") |
|
try: |
|
webpage = session.get(link, headers=headers, timeout=timeout) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
if len(visible_text) > max_chars_per_page: |
|
visible_text = visible_text[:max_chars_per_page] + "..." |
|
all_results.append({"link": link, "text": visible_text}) |
|
print(f"Successfully extracted text from {link}") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error retrieving webpage content: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
print("No link found for this result") |
|
all_results.append({"link": None, "text": None}) |
|
start += len(result_block) |
|
|
|
print(f"Search completed. Total results: {len(all_results)}") |
|
print("Search results:") |
|
for i, result in enumerate(all_results, 1): |
|
print(f"Result {i}:") |
|
print(f" Link: {result['link']}") |
|
if result['text']: |
|
print(f" Text: {result['text'][:100]}...") |
|
else: |
|
print(" No text extracted") |
|
return all_results |
|
|
|
def process_question(question, documents, history, temperature, top_p, repetition_penalty): |
|
global conversation_history |
|
|
|
embeddings = get_embeddings() |
|
|
|
|
|
for prev_question, prev_answer in memory_database.items(): |
|
similarity = get_similarity(question, prev_question) |
|
if similarity > 0.7: |
|
return prev_answer |
|
|
|
|
|
if os.path.exists("faiss_database"): |
|
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) |
|
relevant_docs = db.similarity_search(question, k=3) |
|
else: |
|
relevant_docs = [] |
|
|
|
if len(relevant_docs) == 0: |
|
|
|
web_search_results = google_search(question, num_results=5) |
|
web_docs = [Document(page_content=res["text"] or "", metadata={"source": res["link"]}) for res in web_search_results if res["text"]] |
|
|
|
if web_docs: |
|
|
|
create_or_update_database(web_docs, embeddings) |
|
|
|
|
|
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) |
|
relevant_docs = db.similarity_search(question, k=3) |
|
|
|
context = "\n\n".join([doc.page_content for doc in relevant_docs]) |
|
|
|
if is_related_to_history(question, history): |
|
context = "None" |
|
else: |
|
history_text = "\n".join([f"Q: {h['question']}\nA: {h['answer']}" for h in history]) |
|
context = context if context else "None" |
|
|
|
prompt_text = ChatPromptTemplate( |
|
input_variables=["history", "context", "question"], |
|
template=prompt |
|
).format(history=history_text, context=context, question=question) |
|
|
|
model = get_model(temperature, top_p, repetition_penalty) |
|
answer = generate_chunked_response(model, prompt_text) |
|
|
|
conversation_history = manage_conversation_history(question, answer, history) |
|
memory_database[question] = answer |
|
|
|
return answer |
|
|
|
def process_uploaded_file(file, is_recursive): |
|
if is_recursive: |
|
data = load_and_split_document_recursive(file) |
|
else: |
|
data = load_and_split_document_basic(file) |
|
embeddings = get_embeddings() |
|
create_or_update_database(data, embeddings) |
|
return "File processed and data added to the vector database." |
|
|
|
def extract_db_to_excel(): |
|
embed = get_embeddings() |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
|
|
documents = database.docstore._dict.values() |
|
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] |
|
df = pd.DataFrame(data) |
|
|
|
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: |
|
excel_path = tmp.name |
|
df.to_excel(excel_path, index=False) |
|
|
|
return excel_path |
|
|
|
def export_memory_db_to_excel(): |
|
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()] |
|
df_memory = pd.DataFrame(data) |
|
|
|
data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history] |
|
df_history = pd.DataFrame(data_history) |
|
|
|
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: |
|
excel_path = tmp.name |
|
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer: |
|
df_memory.to_excel(writer, sheet_name='Memory Database', index=False) |
|
df_history.to_excel(writer, sheet_name='Conversation History', index=False) |
|
|
|
return excel_path |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("Upload PDF"): |
|
with gr.Row(): |
|
pdf_file = gr.File(label="Upload PDF") |
|
with gr.Row(): |
|
recursive_check = gr.Checkbox(label="Use Recursive Text Splitter") |
|
upload_button = gr.Button("Upload and Process") |
|
with gr.Row(): |
|
upload_output = gr.Textbox(label="Upload Output") |
|
|
|
with gr.Tab("Ask Questions"): |
|
with gr.Row(): |
|
question = gr.Textbox(label="Your Question") |
|
with gr.Row(): |
|
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature") |
|
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P") |
|
repetition_penalty = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, label="Repetition Penalty") |
|
with gr.Row(): |
|
ask_button = gr.Button("Ask") |
|
with gr.Row(): |
|
answer = gr.Textbox(label="Answer") |
|
|
|
with gr.Tab("Clear Cache"): |
|
with gr.Row(): |
|
clear_button = gr.Button("Clear Cache") |
|
with gr.Row(): |
|
clear_output = gr.Textbox(label="Clear Output") |
|
|
|
with gr.Tab("Export Data"): |
|
with gr.Row(): |
|
export_db_button = gr.Button("Export Database to Excel") |
|
export_db_output = gr.Textbox(label="Export Output") |
|
with gr.Row(): |
|
export_memory_button = gr.Button("Export Memory DB to Excel") |
|
export_memory_output = gr.Textbox(label="Export Output") |
|
|
|
upload_button.click(process_uploaded_file, [pdf_file, recursive_check], upload_output) |
|
ask_button.click(process_question, [question, pdf_file, recursive_check, temperature, top_p, repetition_penalty], answer) |
|
clear_button.click(clear_cache, [], clear_output) |
|
export_db_button.click(extract_db_to_excel, [], export_db_output) |
|
export_memory_button.click(export_memory_db_to_excel, [], export_memory_output) |
|
|
|
demo.launch() |