Shreyas094's picture
Update app.py
f3cc462 verified
raw
history blame
9.89 kB
import os
import logging
import json
import time
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS
from dotenv import load_dotenv
from functools import lru_cache
from tenacity import retry, stop_after_attempt, wait_fixed
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Environment variables and configurations
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
logger.info(f"Using Hugging Face token: {HUGGINGFACE_TOKEN[:4]}...{HUGGINGFACE_TOKEN[-4:] if HUGGINGFACE_TOKEN else 'Not Set'}")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"google/gemma-2-9b-it",
"google/gemma-2-27b-it"
]
FALLBACK_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured and factual.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
class WebSearcher:
def __init__(self):
self.ddgs = DDGS()
@lru_cache(maxsize=100)
def search(self, query, max_results=5):
try:
results = list(self.ddgs.text(query, max_results=max_results))
logger.info(f"Search completed for query: {query}")
return results
except Exception as e:
logger.error(f"Error during DuckDuckGo search: {str(e)}")
return []
@lru_cache(maxsize=1)
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = [
Document(
page_content=f"{result['title']}\n{result['body']}\nSource: {result['href']}",
metadata={"source": result['href']}
)
for result in search_results if 'body' in result
]
logger.info(f"Created vectors for {len(documents)} search results.")
return FAISS.from_documents(documents, embed)
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def make_api_call(client, api_params):
return client.chat_completion(**api_params)
def get_response_with_search(query, system_prompt, model, use_embeddings, history, num_calls=3, temperature=0.2):
searcher = WebSearcher()
search_results = searcher.search(query)
if not search_results:
logger.warning(f"No web search results found for query: {query}")
return "No web search results available. Please try again.", ""
sources = [result['href'] for result in search_results if 'href' in result]
source_list_str = "\n".join(sources)
if use_embeddings:
web_search_database = create_web_search_vectors(search_results)
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
else:
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
logger.info(f"Context created for query: {query}")
chat_history = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history])
user_message = f"""Chat history:
{chat_history}
Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
client = InferenceClient(model, token=HUGGINGFACE_TOKEN)
full_response = ""
try:
for _ in range(num_calls):
api_params = {
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
],
"max_tokens": 3000,
"temperature": temperature,
"top_p": 0.8,
}
logger.info(f"Sending request to API with params: {json.dumps(api_params, indent=2, default=str)}")
response = make_api_call(client, api_params)
logger.info(f"Raw response from model: {response}")
if isinstance(response, dict):
if 'generated_text' in response:
full_response += response['generated_text']
elif 'choices' in response and len(response['choices']) > 0:
if isinstance(response['choices'][0], dict) and 'message' in response['choices'][0]:
full_response += response['choices'][0]['message'].get('content', '')
elif isinstance(response['choices'][0], str):
full_response += response['choices'][0]
elif hasattr(response, 'generated_text'):
full_response += response.generated_text
elif hasattr(response, 'content'):
full_response += response.content
else:
logger.error(f"Unexpected response format from the model: {type(response)}")
return "Unexpected response format from the model. Please try again.", ""
time.sleep(1) # Add a 1-second delay between API calls
except Exception as e:
logger.error(f"Error in get_response_with_search: {str(e)}")
logger.info(f"Attempting fallback to {FALLBACK_MODEL}")
client = InferenceClient(FALLBACK_MODEL, token=HUGGINGFACE_TOKEN)
# Retry with fallback model (you can implement retry logic here)
return f"An error occurred while processing your request: {str(e)}", ""
if not full_response:
logger.warning("No response generated from the model")
return "No response generated from the model.", ""
else:
return f"{full_response}\n\nSources:\n{source_list_str}", ""
def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
logger.info(f"Respond function called with message: {message}")
logger.info(f"User Query: {message}")
logger.info(f"Model Used: {model}")
logger.info(f"Temperature: {temperature}")
logger.info(f"Number of API Calls: {num_calls}")
logger.info(f"Use Embeddings: {use_embeddings}")
logger.info(f"System Prompt: {system_prompt}")
logger.info(f"History: {history}")
try:
main_content, sources = get_response_with_search(message, system_prompt, model, use_embeddings, history, num_calls=num_calls, temperature=temperature)
return main_content
except Exception as e:
logger.error(f"Error in respond function: {str(e)}")
return f"An error occurred: {str(e)}"
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
def create_gradio_interface():
custom_placeholder = "Enter your question here for web search."
demo = gr.ChatInterface(
fn=respond,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Embeddings", value=False),
],
title="AI-powered Web Search Assistant",
description="Use web search to answer questions or generate summaries.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Explain the concept of quantum computing."],
["What are the environmental impacts of renewable energy?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
)
)
with demo:
gr.Markdown("""
## How to use
1. Enter your question in the chat interface.
2. Optionally, modify the System Prompt to guide the AI's behavior.
3. Select the model you want to use from the dropdown.
4. Adjust the Temperature to control the randomness of the response.
5. Set the Number of API Calls to determine how many times the model will be queried.
6. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
7. Press Enter or click the submit button to get your answer.
8. Use the provided examples or ask your own questions.
""")
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)