Shreyas094 commited on
Commit
0af92be
·
verified ·
1 Parent(s): 8df9cbb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -11
app.py CHANGED
@@ -23,6 +23,8 @@ MODELS = [
23
  "mistralai/Mixtral-8x7B-Instruct-v0.1",
24
  "mistralai/Mistral-Nemo-Instruct-2407",
25
  "meta-llama/Meta-Llama-3.1-8B-Instruct",
 
 
26
  "meta-llama/Meta-Llama-3.1-70B-Instruct"
27
  ]
28
 
@@ -54,39 +56,40 @@ class CitingSources(BaseModel):
54
  description="List of sources to cite. Should be an URL of the source."
55
  )
56
 
57
- def chatbot_interface(message, history, model, temperature, num_calls, use_embeddings):
58
  if not message.strip():
59
  return "", history
60
 
61
  history = history + [(message, "")]
62
 
63
  try:
64
- for response in respond(message, history, model, temperature, num_calls, use_embeddings):
65
  history[-1] = (message, response)
66
  yield history
67
- except gr.CanceledError:
68
  yield history
69
  except Exception as e:
70
  logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
71
  history[-1] = (message, f"An unexpected error occurred: {str(e)}")
72
  yield history
73
 
74
- def retry_last_response(history, model, temperature, num_calls, use_embeddings):
75
  if not history:
76
  return history
77
 
78
  last_user_msg = history[-1][0]
79
  history = history[:-1] # Remove the last response
80
 
81
- return chatbot_interface(last_user_msg, history, model, temperature, num_calls, use_embeddings)
82
 
83
- def respond(message, history, model, temperature, num_calls, use_embeddings):
84
  logging.info(f"User Query: {message}")
85
  logging.info(f"Model Used: {model}")
86
  logging.info(f"Use Embeddings: {use_embeddings}")
 
87
 
88
  try:
89
- for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature, use_embeddings=use_embeddings):
90
  response = f"{main_content}\n\n{sources}"
91
  first_line = response.split('\n')[0] if response else ''
92
  yield response
@@ -105,7 +108,7 @@ def create_web_search_vectors(search_results):
105
 
106
  return FAISS.from_documents(documents, embed)
107
 
108
- def get_response_with_search(query, model, num_calls=3, temperature=0.2, use_embeddings=True):
109
  search_results = duckduckgo_search(query)
110
 
111
  if use_embeddings:
@@ -144,7 +147,7 @@ After writing the document, please provide a list of sources used in your respon
144
  try:
145
  response = client.chat_completion(
146
  messages=[
147
- {"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
148
  {"role": "user", "content": prompt}
149
  ],
150
  max_tokens=max_new_tokens,
@@ -191,19 +194,19 @@ def initial_conversation():
191
  return [
192
  (None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
193
  "1. Ask me any question, and I'll search the web for information.\n"
194
- "2. You can adjust the model, temperature, number of API calls, and whether to use embeddings for fine-tuned responses.\n"
195
  "3. For any queries, feel free to reach out @[email protected] or discord - shreyas094\n\n"
196
  "To get started, ask me a question!")
197
  ]
198
 
199
  demo = gr.ChatInterface(
200
  respond,
201
- additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
202
  additional_inputs=[
203
  gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
204
  gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
205
  gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
206
  gr.Checkbox(label="Use Embeddings", value=True),
 
207
  ],
208
  title="AI-powered Web Search Assistant",
209
  description="Ask questions and get answers from web search results.",
 
23
  "mistralai/Mixtral-8x7B-Instruct-v0.1",
24
  "mistralai/Mistral-Nemo-Instruct-2407",
25
  "meta-llama/Meta-Llama-3.1-8B-Instruct",
26
+ "meta-llama/Meta-Llama-3.1-70B-Instruct",
27
+ "meta-llama/Meta-Llama-3.1-8B-Instruct",
28
  "meta-llama/Meta-Llama-3.1-70B-Instruct"
29
  ]
30
 
 
56
  description="List of sources to cite. Should be an URL of the source."
57
  )
58
 
59
+ def chatbot_interface(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
60
  if not message.strip():
61
  return "", history
62
 
63
  history = history + [(message, "")]
64
 
65
  try:
66
+ for response in respond(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
67
  history[-1] = (message, response)
68
  yield history
69
+ except gr.CancelledError:
70
  yield history
71
  except Exception as e:
72
  logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
73
  history[-1] = (message, f"An unexpected error occurred: {str(e)}")
74
  yield history
75
 
76
+ def retry_last_response(history, model, temperature, num_calls, use_embeddings, system_prompt):
77
  if not history:
78
  return history
79
 
80
  last_user_msg = history[-1][0]
81
  history = history[:-1] # Remove the last response
82
 
83
+ return chatbot_interface(last_user_msg, history, model, temperature, num_calls, use_embeddings, system_prompt)
84
 
85
+ def respond(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
86
  logging.info(f"User Query: {message}")
87
  logging.info(f"Model Used: {model}")
88
  logging.info(f"Use Embeddings: {use_embeddings}")
89
+ logging.info(f"System Prompt: {system_prompt}")
90
 
91
  try:
92
+ for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature, use_embeddings=use_embeddings, system_prompt=system_prompt):
93
  response = f"{main_content}\n\n{sources}"
94
  first_line = response.split('\n')[0] if response else ''
95
  yield response
 
108
 
109
  return FAISS.from_documents(documents, embed)
110
 
111
+ def get_response_with_search(query, model, num_calls=3, temperature=0.2, use_embeddings=True, system_prompt=DEFAULT_SYSTEM_PROMPT):
112
  search_results = duckduckgo_search(query)
113
 
114
  if use_embeddings:
 
147
  try:
148
  response = client.chat_completion(
149
  messages=[
150
+ {"role": "system", "content": system_prompt},
151
  {"role": "user", "content": prompt}
152
  ],
153
  max_tokens=max_new_tokens,
 
194
  return [
195
  (None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
196
  "1. Ask me any question, and I'll search the web for information.\n"
197
+ "2. You can adjust the model, temperature, number of API calls, whether to use embeddings, and the system prompt for fine-tuned responses.\n"
198
  "3. For any queries, feel free to reach out @[email protected] or discord - shreyas094\n\n"
199
  "To get started, ask me a question!")
200
  ]
201
 
202
  demo = gr.ChatInterface(
203
  respond,
 
204
  additional_inputs=[
205
  gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
206
  gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
207
  gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
208
  gr.Checkbox(label="Use Embeddings", value=True),
209
+ gr.Textbox(label="System Prompt", lines=5, value=DEFAULT_SYSTEM_PROMPT),
210
  ],
211
  title="AI-powered Web Search Assistant",
212
  description="Ask questions and get answers from web search results.",