Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import logging
|
|
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import InferenceClient
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
@@ -13,9 +14,9 @@ huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
13 |
MODELS = [
|
14 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
15 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
|
16 |
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
17 |
-
"meta-llama/Meta-Llama-3.1-70B-Instruct"
|
18 |
-
"mistralai/Mistral-Nemo-Instruct-2407"
|
19 |
]
|
20 |
|
21 |
def get_embeddings():
|
@@ -35,7 +36,7 @@ def create_web_search_vectors(search_results):
|
|
35 |
documents.append(Document(page_content=content, metadata={"source": result['href']}))
|
36 |
return FAISS.from_documents(documents, embed)
|
37 |
|
38 |
-
def get_response_with_search(query, model, use_embeddings, num_calls=3, temperature=0.2):
|
39 |
search_results = duckduckgo_search(query)
|
40 |
|
41 |
if not search_results:
|
@@ -58,19 +59,23 @@ After writing the document, please provide a list of sources used in your respon
|
|
58 |
# Use Hugging Face API
|
59 |
client = InferenceClient(model, token=huggingface_token)
|
60 |
main_content = ""
|
61 |
-
|
62 |
-
for
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
logging.info(f"User Query: {message}")
|
75 |
logging.info(f"Model Used: {model}")
|
76 |
logging.info(f"Temperature: {temperature}")
|
@@ -78,9 +83,11 @@ def respond(message, history, model, temperature, num_calls, use_embeddings):
|
|
78 |
logging.info(f"Use Embeddings: {use_embeddings}")
|
79 |
|
80 |
try:
|
81 |
-
for main_content, sources in get_response_with_search(message, model, use_embeddings, num_calls=num_calls, temperature=temperature):
|
82 |
response = f"{main_content}\n\n{sources}"
|
83 |
yield response
|
|
|
|
|
84 |
except Exception as e:
|
85 |
logging.error(f"Error in respond function: {str(e)}")
|
86 |
yield f"An error occurred: {str(e)}"
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
+
import asyncio
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
14 |
MODELS = [
|
15 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
16 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
17 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
18 |
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
19 |
+
"meta-llama/Meta-Llama-3.1-70B-Instruct"
|
|
|
20 |
]
|
21 |
|
22 |
def get_embeddings():
|
|
|
36 |
documents.append(Document(page_content=content, metadata={"source": result['href']}))
|
37 |
return FAISS.from_documents(documents, embed)
|
38 |
|
39 |
+
async def get_response_with_search(query, model, use_embeddings, num_calls=3, temperature=0.2):
|
40 |
search_results = duckduckgo_search(query)
|
41 |
|
42 |
if not search_results:
|
|
|
59 |
# Use Hugging Face API
|
60 |
client = InferenceClient(model, token=huggingface_token)
|
61 |
main_content = ""
|
62 |
+
try:
|
63 |
+
for i in range(num_calls):
|
64 |
+
async for message in client.chat_completion(
|
65 |
+
messages=[{"role": "user", "content": prompt}],
|
66 |
+
max_tokens=10000,
|
67 |
+
temperature=temperature,
|
68 |
+
stream=True,
|
69 |
+
):
|
70 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
71 |
+
chunk = message.choices[0].delta.content
|
72 |
+
main_content += chunk
|
73 |
+
yield main_content, ""
|
74 |
+
except Exception as e:
|
75 |
+
logging.error(f"Error in get_response_with_search: {str(e)}")
|
76 |
+
yield f"An error occurred while processing your request: {str(e)}", ""
|
77 |
+
|
78 |
+
async def respond(message, history, model, temperature, num_calls, use_embeddings):
|
79 |
logging.info(f"User Query: {message}")
|
80 |
logging.info(f"Model Used: {model}")
|
81 |
logging.info(f"Temperature: {temperature}")
|
|
|
83 |
logging.info(f"Use Embeddings: {use_embeddings}")
|
84 |
|
85 |
try:
|
86 |
+
async for main_content, sources in get_response_with_search(message, model, use_embeddings, num_calls=num_calls, temperature=temperature):
|
87 |
response = f"{main_content}\n\n{sources}"
|
88 |
yield response
|
89 |
+
except asyncio.CancelledError:
|
90 |
+
yield "The operation was cancelled. Please try again."
|
91 |
except Exception as e:
|
92 |
logging.error(f"Error in respond function: {str(e)}")
|
93 |
yield f"An error occurred: {str(e)}"
|