Update app.py
Browse files
app.py
CHANGED
@@ -17,14 +17,10 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
17 |
|
18 |
# Environment variables and configurations
|
19 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
20 |
-
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
|
21 |
-
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
|
22 |
-
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
|
23 |
|
24 |
MODELS = [
|
25 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
26 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
27 |
-
"@cf/meta/llama-3.1-8b-instruct",
|
28 |
"mistralai/Mistral-Nemo-Instruct-2407",
|
29 |
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
30 |
"meta-llama/Meta-Llama-3.1-70B-Instruct"
|
@@ -112,76 +108,21 @@ def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
|
112 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
113 |
After writing the document, please provide a list of sources used in your response."""
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature):
|
118 |
-
yield response, "" # Yield streaming response without sources
|
119 |
-
else:
|
120 |
-
# Use Hugging Face API
|
121 |
-
client = InferenceClient(model, token=huggingface_token)
|
122 |
-
|
123 |
-
main_content = ""
|
124 |
-
for i in range(num_calls):
|
125 |
-
for message in client.chat_completion(
|
126 |
-
messages=[{"role": "user", "content": prompt}],
|
127 |
-
max_tokens=10000,
|
128 |
-
temperature=temperature,
|
129 |
-
stream=True,
|
130 |
-
):
|
131 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
132 |
-
chunk = message.choices[0].delta.content
|
133 |
-
main_content += chunk
|
134 |
-
yield main_content, "" # Yield partial main content without sources
|
135 |
-
|
136 |
-
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2):
|
137 |
-
headers = {
|
138 |
-
"Authorization": f"Bearer {API_TOKEN}",
|
139 |
-
"Content-Type": "application/json"
|
140 |
-
}
|
141 |
-
model = "@cf/meta/llama-3.1-8b-instruct"
|
142 |
-
|
143 |
-
instruction = f"""Using the following context:
|
144 |
-
{context}
|
145 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
146 |
-
After writing the document, please provide a list of sources used in your response."""
|
147 |
-
|
148 |
-
inputs = [
|
149 |
-
{"role": "system", "content": instruction},
|
150 |
-
{"role": "user", "content": query}
|
151 |
-
]
|
152 |
-
|
153 |
-
payload = {
|
154 |
-
"messages": inputs,
|
155 |
-
"stream": True,
|
156 |
-
"temperature": temperature,
|
157 |
-
"max_tokens": 32000
|
158 |
-
}
|
159 |
-
|
160 |
-
full_response = ""
|
161 |
-
for i in range(num_calls):
|
162 |
-
try:
|
163 |
-
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
|
164 |
-
if response.status_code == 200:
|
165 |
-
for line in response.iter_lines():
|
166 |
-
if line:
|
167 |
-
try:
|
168 |
-
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
|
169 |
-
if 'response' in json_response:
|
170 |
-
chunk = json_response['response']
|
171 |
-
full_response += chunk
|
172 |
-
yield full_response
|
173 |
-
except (json.JSONDecodeError, IndexError) as e:
|
174 |
-
logging.error(f"Error parsing streaming response: {str(e)}")
|
175 |
-
continue
|
176 |
-
else:
|
177 |
-
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
|
178 |
-
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
|
179 |
-
except Exception as e:
|
180 |
-
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
|
181 |
-
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
|
182 |
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
def vote(data: gr.LikeData):
|
187 |
if data.liked:
|
@@ -205,7 +146,7 @@ def initial_conversation():
|
|
205 |
demo = gr.ChatInterface(
|
206 |
respond,
|
207 |
additional_inputs=[
|
208 |
-
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[
|
209 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
210 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
211 |
],
|
|
|
17 |
|
18 |
# Environment variables and configurations
|
19 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
20 |
|
21 |
MODELS = [
|
22 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
23 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
|
24 |
"mistralai/Mistral-Nemo-Instruct-2407",
|
25 |
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
26 |
"meta-llama/Meta-Llama-3.1-70B-Instruct"
|
|
|
108 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
109 |
After writing the document, please provide a list of sources used in your response."""
|
110 |
|
111 |
+
# Use Hugging Face API
|
112 |
+
client = InferenceClient(model, token=huggingface_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
main_content = ""
|
115 |
+
for i in range(num_calls):
|
116 |
+
for message in client.chat_completion(
|
117 |
+
messages=[{"role": "user", "content": prompt}],
|
118 |
+
max_tokens=10000,
|
119 |
+
temperature=temperature,
|
120 |
+
stream=True,
|
121 |
+
):
|
122 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
123 |
+
chunk = message.choices[0].delta.content
|
124 |
+
main_content += chunk
|
125 |
+
yield main_content, "" # Yield partial main content without sources
|
126 |
|
127 |
def vote(data: gr.LikeData):
|
128 |
if data.liked:
|
|
|
146 |
demo = gr.ChatInterface(
|
147 |
respond,
|
148 |
additional_inputs=[
|
149 |
+
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
|
150 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
151 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
152 |
],
|