Shreyas094 commited on
Commit
d9bca78
·
verified ·
1 Parent(s): 3890ae0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -28
app.py CHANGED
@@ -9,18 +9,10 @@ from duckduckgo_search import DDGS
9
 
10
  # Environment variables and configurations
11
  huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
12
- llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
13
- ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
14
- API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
15
- API_BASE_URL = f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/"
16
-
17
- print(f"ACCOUNT_ID: {ACCOUNT_ID}")
18
- print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
19
 
20
  MODELS = [
21
  "mistralai/Mistral-7B-Instruct-v0.3",
22
  "mistralai/Mixtral-8x7B-Instruct-v0.1",
23
- "@cf/meta/llama-3.1-8b-instruct",
24
  "mistralai/Mistral-Nemo-Instruct-2407"
25
  ]
26
 
@@ -56,25 +48,20 @@ def get_response_with_search(query, model, num_calls=3, temperature=0.2):
56
  Write a detailed and complete research document that fulfills the following user request: '{query}'
57
  After writing the document, please provide a list of sources used in your response."""
58
 
59
- if model == "@cf/meta/llama-3.1-8b-instruct":
60
- # Use Cloudflare API
61
- for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
62
- yield response, ""
63
- else:
64
- # Use Hugging Face API
65
- client = InferenceClient(model, token=huggingface_token)
66
- main_content = ""
67
- for i in range(num_calls):
68
- for message in client.chat_completion(
69
- messages=[{"role": "user", "content": prompt}],
70
- max_tokens=10000,
71
- temperature=temperature,
72
- stream=True,
73
- ):
74
- if message.choices and message.choices[0].delta and message.choices[0].delta.content:
75
- chunk = message.choices[0].delta.content
76
- main_content += chunk
77
- yield main_content, ""
78
 
79
  def respond(message, history, model, temperature, num_calls):
80
  logging.info(f"User Query: {message}")
@@ -101,6 +88,7 @@ css = """
101
  width: 100%;
102
  }
103
  """
 
104
  # Gradio interface setup
105
  def create_gradio_interface():
106
  custom_placeholder = "Enter your question here for web search."
@@ -108,7 +96,7 @@ def create_gradio_interface():
108
  demo = gr.ChatInterface(
109
  respond,
110
  additional_inputs=[
111
- gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
112
  gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
113
  gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
114
  ],
 
9
 
10
  # Environment variables and configurations
11
  huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
 
 
 
 
 
 
 
12
 
13
  MODELS = [
14
  "mistralai/Mistral-7B-Instruct-v0.3",
15
  "mistralai/Mixtral-8x7B-Instruct-v0.1",
 
16
  "mistralai/Mistral-Nemo-Instruct-2407"
17
  ]
18
 
 
48
  Write a detailed and complete research document that fulfills the following user request: '{query}'
49
  After writing the document, please provide a list of sources used in your response."""
50
 
51
+ # Use Hugging Face API
52
+ client = InferenceClient(model, token=huggingface_token)
53
+ main_content = ""
54
+ for i in range(num_calls):
55
+ for message in client.chat_completion(
56
+ messages=[{"role": "user", "content": prompt}],
57
+ max_tokens=10000,
58
+ temperature=temperature,
59
+ stream=True,
60
+ ):
61
+ if message.choices and message.choices[0].delta and message.choices[0].delta.content:
62
+ chunk = message.choices[0].delta.content
63
+ main_content += chunk
64
+ yield main_content, ""
 
 
 
 
 
65
 
66
  def respond(message, history, model, temperature, num_calls):
67
  logging.info(f"User Query: {message}")
 
88
  width: 100%;
89
  }
90
  """
91
+
92
  # Gradio interface setup
93
  def create_gradio_interface():
94
  custom_placeholder = "Enter your question here for web search."
 
96
  demo = gr.ChatInterface(
97
  respond,
98
  additional_inputs=[
99
+ gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
100
  gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
101
  gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
102
  ],