Shriharsh commited on
Commit
5a35f4a
·
verified ·
1 Parent(s): 5334719

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -22,8 +22,11 @@ retriever = SentenceTransformer('all-MiniLM-L6-v2')
22
 
23
  # Load ONNX model for QA using optimum.onnxruntime
24
  # Model: Xenova/distilbert-base-uncased-distilled-squad (~260MB)
25
- # Use ORTModelForQuestionAnswering to load the ONNX model
26
- model = ORTModelForQuestionAnswering.from_pretrained("Xenova/distilbert-base-uncased-distilled-squad")
 
 
 
27
  tokenizer = AutoTokenizer.from_pretrained("Xenova/distilbert-base-uncased-distilled-squad")
28
  qa_model = pipeline("question-answering", model=model, tokenizer=tokenizer, framework="ort")
29
 
@@ -89,7 +92,7 @@ def answer_question(question):
89
 
90
  # Compute cosine similarity with stored embeddings
91
  cos_scores = util.cos_sim(question_embedding, embeddings)[0]
92
- top_k = min(2, len(corpus)) # Get top 3 or less if fewer paragraphs
93
  top_indices = np.argsort(-cos_scores)[:top_k]
94
 
95
  # Retrieve context (top 3 paragraphs)
 
22
 
23
  # Load ONNX model for QA using optimum.onnxruntime
24
  # Model: Xenova/distilbert-base-uncased-distilled-squad (~260MB)
25
+ # Specify file_name="model.onnx" to select the correct ONNX file
26
+ model = ORTModelForQuestionAnswering.from_pretrained(
27
+ "Xenova/distilbert-base-uncased-distilled-squad",
28
+ file_name="model.onnx"
29
+ )
30
  tokenizer = AutoTokenizer.from_pretrained("Xenova/distilbert-base-uncased-distilled-squad")
31
  qa_model = pipeline("question-answering", model=model, tokenizer=tokenizer, framework="ort")
32
 
 
92
 
93
  # Compute cosine similarity with stored embeddings
94
  cos_scores = util.cos_sim(question_embedding, embeddings)[0]
95
+ top_k = min(2, len(corpus)) # Get top 2 or less if fewer paragraphs
96
  top_indices = np.argsort(-cos_scores)[:top_k]
97
 
98
  # Retrieve context (top 3 paragraphs)