# Web Content Q&A Tool for Hugging Face Spaces # Optimized for memory constraints (2GB RAM) and 24-hour timeline # Features: Ingest up to 3 URLs, ask questions, get concise one-line answers using DistilBERT with PyTorch import gradio as gr from bs4 import BeautifulSoup import requests from sentence_transformers import SentenceTransformer, util import numpy as np from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer import torch from huggingface_hub import hf_hub_download, HfFolder from huggingface_hub.utils import configure_http_backend import requests as hf_requests import re # Configure Hugging Face Hub to use a custom session with increased timeout and retries def create_custom_session(): session = hf_requests.Session() # Increase timeout to 30 seconds (default is 10 seconds) adapter = hf_requests.adapters.HTTPAdapter(max_retries=3) # Retry 3 times on failure session.mount("https://", adapter) session.timeout = 30 # Set timeout to 30 seconds return session # Set the custom session for Hugging Face Hub configure_http_backend(backend_factory=create_custom_session) # Global variables for in-memory storage (reset on app restart) corpus = [] # List of paragraphs from URLs embeddings = None # Precomputed embeddings for retrieval sources_list = [] # Source URLs for each paragraph # Load models at startup (memory: ~370MB total) # Retrieval model: all-mpnet-base-v2 (~110MB, 768-dim embeddings) retriever = SentenceTransformer('all-mpnet-base-v2') # Load PyTorch model for QA # Model: distilbert-base-uncased-distilled-squad (~260MB) try: model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased-distilled-squad") tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-distilled-squad") except Exception as e: print(f"Error loading model: {str(e)}. Retrying with force_download=True...") # Force re-download in case of corrupted cache model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased-distilled-squad", force_download=True) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-distilled-squad", force_download=True) # Set model to evaluation mode model.eval() # Apply quantization to the model for faster inference on CPU model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) # Create the QA pipeline with PyTorch qa_model = pipeline("question-answering", model=model, tokenizer=tokenizer, framework="pt", device=-1) # device=-1 for CPU # Utility function to truncate text to one line def truncate_to_one_line(text): # Split by sentence-ending punctuation and take the first sentence sentences = re.split(r'[.!?]+', text.strip()) first_sentence = sentences[0].strip() if sentences else text.strip() # If the sentence is too long, truncate to 100 characters if len(first_sentence) > 100: first_sentence = first_sentence[:100].rsplit(' ', 1)[0] + "..." return first_sentence if first_sentence else "No answer available." def ingest_urls(urls): """ Ingest up to 3 URLs, scrape content, and compute embeddings. Limits: 100 paragraphs per URL to manage memory (~0.5MB embeddings total). """ global corpus, embeddings, sources_list # Clear previous data corpus.clear() sources_list.clear() embeddings = None # Parse URLs from input (one per line, max 3) url_list = [url.strip() for url in urls.split("\n") if url.strip()][:3] if not url_list: return "Error: Please enter at least one valid URL." # Headers to mimic browser and avoid blocking headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"} # Scrape each URL for url in url_list: try: response = requests.get(url, headers=headers, timeout=5) response.raise_for_status() # Raise exception for bad status codes soup = BeautifulSoup(response.text, 'html.parser') # Extract content from

and

tags for broader coverage elements = soup.find_all(['p', 'div']) paragraph_count = 0 for elem in elements: text = elem.get_text().strip() # Filter short or empty text if text and len(text) > 20 and paragraph_count < 100: corpus.append(text) sources_list.append(url) paragraph_count += 1 if paragraph_count == 0: return f"Warning: No usable content found at {url}." except Exception as e: return f"Error ingesting {url}: {str(e)}. Check URL and try again." # Compute embeddings if content was ingested if corpus: # Embeddings: ~3KB per paragraph, ~900KB for 300 paragraphs (768-dim) embeddings = retriever.encode(corpus, convert_to_tensor=True, show_progress_bar=False) return f"Success: Ingested {len(corpus)} paragraphs from {len(set(url_list))} URLs." return "Error: No valid content ingested." def answer_question(question): """ Answer a question using retrieved context and DistilBERT QA (PyTorch). Retrieves top 2 paragraphs to improve answer accuracy. If total context exceeds 512 tokens (DistilBERT's max length), it will be truncated automatically. Ensures answers are one line (max 100 chars). """ global corpus, embeddings, sources_list if not corpus or embeddings is None: return "Error: Please ingest URLs first." # Encode question into embedding question_embedding = retriever.encode(question, convert_to_tensor=True) # Compute cosine similarity with stored embeddings cos_scores = util.cos_sim(question_embedding, embeddings)[0] top_k = min(2, len(corpus)) # Get top 2 paragraphs to improve accuracy top_indices = np.argsort(-cos_scores)[:top_k] # Retrieve context (top 2 paragraphs) contexts = [corpus[i] for i in top_indices] context = " ".join(contexts) # Concatenate with space sources = [sources_list[i] for i in top_indices] # Extract answer with DistilBERT (PyTorch) with torch.no_grad(): # Disable gradient computation for faster inference result = qa_model(question=question, context=context) answer = result['answer'] confidence = result['score'] # Truncate answer to one line answer = truncate_to_one_line(answer) # Ensure at least one line if not answer: answer = "No answer available." # Format response with answer, confidence, and sources sources_str = "\n".join(set(sources)) # Unique sources return f"Answer: {answer}\nConfidence: {confidence:.2f}\nSources:\n{sources_str}" def clear_all(): """Clear all inputs and outputs for a fresh start.""" global corpus, embeddings, sources_list corpus.clear() embeddings = None sources_list.clear() return "", "", "" # Gradio UI with minimal, user-friendly design with gr.Blocks(title="Web Content Q&A Tool") as demo: gr.Markdown( """ # Web Content Q&A Tool Enter up to 3 URLs (one per line), ingest their content, and ask questions. Answers are generated using only the ingested data. Note: Data resets on app restart. """ ) # URL input and ingestion with gr.Row(): url_input = gr.Textbox(label="Enter URLs (one per line, max 3)", lines=3, placeholder="https://example.com") with gr.Column(): ingest_btn = gr.Button("Ingest URLs") clear_btn = gr.Button("Clear All") ingest_output = gr.Textbox(label="Ingestion Status", interactive=False) # Question input and answer with gr.Row(): question_input = gr.Textbox(label="Ask a question", placeholder="What is this about?") ask_btn = gr.Button("Ask") answer_output = gr.Textbox(label="Answer", lines=5, interactive=False) # Bind functions to buttons ingest_btn.click(fn=ingest_urls, inputs=url_input, outputs=ingest_output) ask_btn.click(fn=answer_question, inputs=question_input, outputs=answer_output) clear_btn.click(fn=clear_all, inputs=None, outputs=[url_input, ingest_output, answer_output]) # Launch the app (HF Spaces expects port 7860) demo.launch(server_name="0.0.0.0", server_port=7860)