Spaces:
Runtime error
Runtime error
Commit
·
d3debb8
1
Parent(s):
5df03ae
Delete app.py
Browse files
app.py
DELETED
@@ -1,255 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"# Image captioning with ViT+GPT2"
|
8 |
-
]
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"cell_type": "code",
|
12 |
-
"execution_count": 1,
|
13 |
-
"metadata": {},
|
14 |
-
"outputs": [
|
15 |
-
{
|
16 |
-
"name": "stderr",
|
17 |
-
"output_type": "stream",
|
18 |
-
"text": [
|
19 |
-
"f:\\Image caption genrerator\\image_caption\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
20 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
21 |
-
]
|
22 |
-
}
|
23 |
-
],
|
24 |
-
"source": [
|
25 |
-
"from PIL import Image\n",
|
26 |
-
"from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, PreTrainedTokenizerFast\n",
|
27 |
-
"import requests"
|
28 |
-
]
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"cell_type": "code",
|
32 |
-
"execution_count": 2,
|
33 |
-
"metadata": {},
|
34 |
-
"outputs": [],
|
35 |
-
"source": [
|
36 |
-
"model = VisionEncoderDecoderModel.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")"
|
37 |
-
]
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"cell_type": "code",
|
41 |
-
"execution_count": 3,
|
42 |
-
"metadata": {},
|
43 |
-
"outputs": [
|
44 |
-
{
|
45 |
-
"name": "stderr",
|
46 |
-
"output_type": "stream",
|
47 |
-
"text": [
|
48 |
-
"f:\\Image caption genrerator\\image_caption\\lib\\site-packages\\transformers\\models\\vit\\feature_extraction_vit.py:28: FutureWarning: The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use ViTImageProcessor instead.\n",
|
49 |
-
" warnings.warn(\n"
|
50 |
-
]
|
51 |
-
}
|
52 |
-
],
|
53 |
-
"source": [
|
54 |
-
"vit_feature_extactor = ViTFeatureExtractor.from_pretrained(\"google/vit-base-patch16-224-in21k\")"
|
55 |
-
]
|
56 |
-
},
|
57 |
-
{
|
58 |
-
"cell_type": "code",
|
59 |
-
"execution_count": 4,
|
60 |
-
"metadata": {},
|
61 |
-
"outputs": [
|
62 |
-
{
|
63 |
-
"name": "stderr",
|
64 |
-
"output_type": "stream",
|
65 |
-
"text": [
|
66 |
-
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. \n",
|
67 |
-
"The tokenizer class you load from this checkpoint is 'GPT2Tokenizer'. \n",
|
68 |
-
"The class this function is called from is 'PreTrainedTokenizerFast'.\n"
|
69 |
-
]
|
70 |
-
}
|
71 |
-
],
|
72 |
-
"source": [
|
73 |
-
"tokenizer = PreTrainedTokenizerFast.from_pretrained(\"distilgpt2\")"
|
74 |
-
]
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"cell_type": "code",
|
78 |
-
"execution_count": 5,
|
79 |
-
"metadata": {},
|
80 |
-
"outputs": [],
|
81 |
-
"source": [
|
82 |
-
"#url = 'https://d2gp644kobdlm6.cloudfront.net/wp-content/uploads/2016/06/bigstock-Shocked-and-surprised-boy-on-t-113798588-300x212.jpg'"
|
83 |
-
]
|
84 |
-
},
|
85 |
-
{
|
86 |
-
"cell_type": "code",
|
87 |
-
"execution_count": 6,
|
88 |
-
"metadata": {},
|
89 |
-
"outputs": [],
|
90 |
-
"source": [
|
91 |
-
"# with Image.open(requests.get(url, stream=True).raw) as img:\n",
|
92 |
-
"# pixel_values = vit_feature_extactor(images=img, return_tensors=\"pt\").pixel_values"
|
93 |
-
]
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"cell_type": "code",
|
97 |
-
"execution_count": 7,
|
98 |
-
"metadata": {},
|
99 |
-
"outputs": [
|
100 |
-
{
|
101 |
-
"name": "stderr",
|
102 |
-
"output_type": "stream",
|
103 |
-
"text": [
|
104 |
-
"f:\\Image caption genrerator\\image_caption\\lib\\site-packages\\transformers\\generation\\utils.py:1346: UserWarning: Using `max_length`'s default (20) to control the generation length. This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
|
105 |
-
" warnings.warn(\n"
|
106 |
-
]
|
107 |
-
}
|
108 |
-
],
|
109 |
-
"source": [
|
110 |
-
"# encoder_outputs = model.generate(pixel_values.to('cpu'),num_beams = 5)"
|
111 |
-
]
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"cell_type": "code",
|
115 |
-
"execution_count": 8,
|
116 |
-
"metadata": {},
|
117 |
-
"outputs": [],
|
118 |
-
"source": [
|
119 |
-
"# generated_senetences = tokenizer.batch_decode(encoder_outputs, skip_special_tokens=True,)"
|
120 |
-
]
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"cell_type": "code",
|
124 |
-
"execution_count": 9,
|
125 |
-
"metadata": {},
|
126 |
-
"outputs": [
|
127 |
-
{
|
128 |
-
"data": {
|
129 |
-
"text/plain": [
|
130 |
-
"['a young boy sitting in front of a laptop computer ']"
|
131 |
-
]
|
132 |
-
},
|
133 |
-
"execution_count": 9,
|
134 |
-
"metadata": {},
|
135 |
-
"output_type": "execute_result"
|
136 |
-
}
|
137 |
-
],
|
138 |
-
"source": [
|
139 |
-
"# generated_senetences"
|
140 |
-
]
|
141 |
-
},
|
142 |
-
{
|
143 |
-
"cell_type": "code",
|
144 |
-
"execution_count": 11,
|
145 |
-
"metadata": {},
|
146 |
-
"outputs": [
|
147 |
-
{
|
148 |
-
"data": {
|
149 |
-
"text/plain": [
|
150 |
-
"'a young boy sitting in front of a laptop computer '"
|
151 |
-
]
|
152 |
-
},
|
153 |
-
"execution_count": 11,
|
154 |
-
"metadata": {},
|
155 |
-
"output_type": "execute_result"
|
156 |
-
}
|
157 |
-
],
|
158 |
-
"source": [
|
159 |
-
"# generated_senetences[0].split(\".\")[0]"
|
160 |
-
]
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"cell_type": "code",
|
164 |
-
"execution_count": 13,
|
165 |
-
"metadata": {},
|
166 |
-
"outputs": [],
|
167 |
-
"source": [
|
168 |
-
"def vit2distilgpt2(img):\n",
|
169 |
-
" pixel_values = vit_feature_extactor(images=img, return_tensors=\"pt\").pixel_values\n",
|
170 |
-
" encoder_outputs = generated_ids = model.generate(pixel_values.to('cpu'),num_beams=5)\n",
|
171 |
-
" generated_senetences = tokenizer.batch_decode(encoder_outputs, skip_special_tokens=True)\n",
|
172 |
-
"\n",
|
173 |
-
" return(generated_senetences[0].split('.')[0])"
|
174 |
-
]
|
175 |
-
},
|
176 |
-
{
|
177 |
-
"cell_type": "code",
|
178 |
-
"execution_count": 14,
|
179 |
-
"metadata": {},
|
180 |
-
"outputs": [],
|
181 |
-
"source": [
|
182 |
-
"import gradio as gr"
|
183 |
-
]
|
184 |
-
},
|
185 |
-
{
|
186 |
-
"cell_type": "code",
|
187 |
-
"execution_count": 2,
|
188 |
-
"metadata": {},
|
189 |
-
"outputs": [
|
190 |
-
{
|
191 |
-
"ename": "NameError",
|
192 |
-
"evalue": "name 'gr' is not defined",
|
193 |
-
"output_type": "error",
|
194 |
-
"traceback": [
|
195 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
196 |
-
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
197 |
-
"Cell \u001b[1;32mIn[2], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m inputs \u001b[39m=\u001b[39m [\n\u001b[1;32m----> 2\u001b[0m gr\u001b[39m.\u001b[39minputs\u001b[39m.\u001b[39mImage(\u001b[39mtype\u001b[39m\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mpil\u001b[39m\u001b[39m\"\u001b[39m,label\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mOriginal Images\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 3\u001b[0m ]\n\u001b[0;32m 5\u001b[0m outputs \u001b[39m=\u001b[39m [\n\u001b[0;32m 6\u001b[0m gr\u001b[39m.\u001b[39moutputs\u001b[39m.\u001b[39mTextbox(label \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mCaption\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 7\u001b[0m ]\n\u001b[0;32m 9\u001b[0m title \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mImage Captioning using ViT + GPT2\u001b[39m\u001b[39m\"\u001b[39m\n",
|
198 |
-
"\u001b[1;31mNameError\u001b[0m: name 'gr' is not defined"
|
199 |
-
]
|
200 |
-
}
|
201 |
-
],
|
202 |
-
"source": [
|
203 |
-
"inputs = [\n",
|
204 |
-
" gr.inputs.Image(type=\"pil\",label=\"Original Images\")\n",
|
205 |
-
"]\n",
|
206 |
-
"\n",
|
207 |
-
"outputs = [\n",
|
208 |
-
" gr.outputs.Textbox(label = \"Caption\")\n",
|
209 |
-
"]\n",
|
210 |
-
"\n",
|
211 |
-
"title = \"Image Captioning using ViT + GPT2\"\n",
|
212 |
-
"description = \"ViT and GPT2 are used to generate Image Caption for the uploaded image.COCO DataSet is used for Training\"\n",
|
213 |
-
"examples = [\n",
|
214 |
-
" [\".Image1.png\"],\n",
|
215 |
-
" [\".Image2.png\"],\n",
|
216 |
-
" [\".Image3.png\"]\n",
|
217 |
-
"]\n",
|
218 |
-
"\n",
|
219 |
-
"\n",
|
220 |
-
"\n",
|
221 |
-
"\n",
|
222 |
-
"gr.Interface(\n",
|
223 |
-
" vit2distilgpt2,\n",
|
224 |
-
" inputs,\n",
|
225 |
-
" outputs,\n",
|
226 |
-
" title=title,\n",
|
227 |
-
" description=description,\n",
|
228 |
-
" examples=examples,\n",
|
229 |
-
" theme=\"huggingface\",\n",
|
230 |
-
").launch(debug=True, enable_queue=True, share=True)"
|
231 |
-
]
|
232 |
-
}
|
233 |
-
],
|
234 |
-
"metadata": {
|
235 |
-
"kernelspec": {
|
236 |
-
"display_name": "Python 3 (ipykernel)",
|
237 |
-
"language": "python",
|
238 |
-
"name": "python3"
|
239 |
-
},
|
240 |
-
"language_info": {
|
241 |
-
"codemirror_mode": {
|
242 |
-
"name": "ipython",
|
243 |
-
"version": 3
|
244 |
-
},
|
245 |
-
"file_extension": ".py",
|
246 |
-
"mimetype": "text/x-python",
|
247 |
-
"name": "python",
|
248 |
-
"nbconvert_exporter": "python",
|
249 |
-
"pygments_lexer": "ipython3",
|
250 |
-
"version": "3.10.9"
|
251 |
-
}
|
252 |
-
},
|
253 |
-
"nbformat": 4,
|
254 |
-
"nbformat_minor": 2
|
255 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|