File size: 6,995 Bytes
d4fe1e6
c39e9ff
d4fe1e6
 
 
 
c39e9ff
d4fe1e6
 
c39e9ff
d4fe1e6
 
5d29bbd
 
 
 
8d6462e
 
 
d4fe1e6
 
 
 
c39e9ff
241cc6f
d4fe1e6
c39e9ff
8d6462e
 
fe5b0a5
c39e9ff
eb601c1
d4fe1e6
5d29bbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc31fa8
5d29bbd
 
 
eb601c1
5d29bbd
 
 
 
 
eb601c1
c39e9ff
 
bc31fa8
5d29bbd
eb601c1
1955fd3
eb601c1
 
 
5d29bbd
eb601c1
1955fd3
 
 
5d29bbd
 
 
c97c9f9
5d29bbd
 
 
 
 
 
 
eb601c1
5d29bbd
bc31fa8
 
 
 
 
38930b8
5d29bbd
eb601c1
5d29bbd
 
 
 
 
 
eb601c1
5d29bbd
 
 
eb601c1
 
5219f50
3f591a2
eb601c1
5d29bbd
 
 
1955fd3
8712735
1955fd3
8d6462e
 
 
1955fd3
3767bc2
 
c39e9ff
3767bc2
e9116d0
c39e9ff
3767bc2
 
 
5d29bbd
eb601c1
3f1a935
ff2dfb3
3f1a935
5343470
ff2dfb3
 
 
63a03db
ff2dfb3
 
5343470
ff2dfb3
1955fd3
 
2442693
c52d702
c39e9ff
1955fd3
 
 
 
c39e9ff
c4bd367
1955fd3
 
c39e9ff
eb601c1
c52d702
c39e9ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -*- coding: utf-8 -*-
"""Copy of demo.ipynb

Automatically generated by Colaboratory.

Original file is located at
   https://colab.research.google.com/github/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch/blob/main/notebooks/demo.ipynb
"""

import gradio as gr
import torch as th

from composable_diffusion.download import download_model
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr

from torch import autocast
from diffusers import StableDiffusionPipeline

# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')

# init stable diffusion model
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    use_auth_token='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'
).to(device)


# create model for CLEVR Objects
clevr_options = model_and_diffusion_defaults_for_clevr()

flags = {
    "image_size": 128,
    "num_channels": 192,
    "num_res_blocks": 2,
    "learn_sigma": True,
    "use_scale_shift_norm": False,
    "raw_unet": True,
    "noise_schedule": "squaredcos_cap_v2",
    "rescale_learned_sigmas": False,
    "rescale_timesteps": False,
    "num_classes": '2',
    "dataset": "clevr_pos",
    "use_fp16": has_cuda,
    "timestep_respacing": '100'
}

for key, val in flags.items():
    clevr_options[key] = val

clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
clevr_model.eval()
if has_cuda:
    clevr_model.convert_to_fp16()

clevr_model.to(device)
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))


def compose_clevr_objects(prompt, guidance_scale, steps):
    coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
                   for x in prompt.split('|')]
    coordinates += [[-1, -1]]  # add unconditional score label
    batch_size = 1

    clevr_options['timestep_respacing'] = str(int(steps))
    _, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)

    def model_fn(x_t, ts, **kwargs):
        half = x_t[:1]
        combined = th.cat([half] * kwargs['y'].size(0), dim=0)
        model_out = clevr_model(combined, ts, **kwargs)
        eps, rest = model_out[:, :3], model_out[:, 3:]
        masks = kwargs.get('masks')
        cond_eps = eps[masks].mean(dim=0, keepdim=True)
        uncond_eps = eps[~masks].mean(dim=0, keepdim=True)
        half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
        eps = th.cat([half_eps] * x_t.size(0), dim=0)
        return th.cat([eps, rest], dim=1)

    def sample(coordinates):
        masks = [True] * (len(coordinates) - 1) + [False]
        model_kwargs = dict(
            y=th.tensor(coordinates, dtype=th.float, device=device),
            masks=th.tensor(masks, dtype=th.bool, device=device)
        )
        samples = clevr_diffusion.p_sample_loop(
            model_fn,
            (len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]),
            device=device,
            clip_denoised=True,
            progress=True,
            model_kwargs=model_kwargs,
            cond_fn=None,
        )[:batch_size]

        return samples

    samples = sample(coordinates)
    out_img = samples[0].permute(1, 2, 0)
    out_img = (out_img + 1) / 2
    out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
    out_img = out_img.numpy()

    return out_img


def stable_diffusion_compose(prompt, scale, steps):
    with autocast('cpu' if not th.cuda.is_available() else 'cuda'):
        image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps)["sample"][0]
        return image


def compose(prompt, version, guidance_scale, steps):
    try:
        with th.no_grad():
            if version == 'Stable_Diffusion_1v_4':
                return stable_diffusion_compose(prompt, guidance_scale, steps)
            else:
                return compose_clevr_objects(prompt, guidance_scale, steps)
    except Exception as e:
        print(e)
        return None


examples_1 = 'a camel | a forest'
examples_2 = 'A blue sky  | A mountain in the horizon | Cherry Blossoms in front of the mountain'
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
examples_4 = 'a blue house | a desert'
examples_5 = 'a white church | lightning in the background'
examples_6 = 'a camel | arctic'
examples_7 = 'A lake | A mountain  | Cherry Blossoms next to the lake'
examples = [
            [examples_7, 'Stable_Diffusion_1v_4', 15, 50],
            [examples_5, 'Stable_Diffusion_1v_4', 15, 50],
            [examples_4, 'Stable_Diffusion_1v_4', 15, 50],
            [examples_6, 'Stable_Diffusion_1v_4', 15, 50],
            [examples_3, 'CLEVR Objects', 10, 100]
]

title = 'Compositional Visual Generation with Composable Diffusion Models'
description = '<p>Demo for Composable Diffusion<ul><li>~30s per Stable-Diffusion example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is varied depending on what gpu is used.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> and <a href="https://github.com/CompVis/stable-diffusion/">Stable Diffusion</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing  multiple sentences, use `|` as the delimiter, see given examples below.</p><p><b>Note: When using Stable Diffusion, black images will be returned if the given prompt is detected as problematic. For composing GLIDE model, we recommend using the Colab demo in our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</b></p>'

iface = gr.Interface(compose,
                     inputs=[
                         "text",
                         gr.Radio(['Stable_Diffusion_1v_4', 'CLEVR Objects'], type="value", label='version'),
                         gr.Slider(2, 30),
                         gr.Slider(10, 200)
                     ],
                     outputs='image',
                     title=title, description=description, examples=examples)

iface.launch(enable_queue=True)