File size: 6,298 Bytes
d4fe1e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
"""Copy of compose_glide.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
"""


from PIL import Image
from IPython.display import display
import torch as th

from glide_text2im.download import load_checkpoint
from glide_text2im.model_creation import (
    create_model_and_diffusion,
    model_and_diffusion_defaults,
    model_and_diffusion_defaults_upsampler
)

# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

# Create base model.
timestep_respacing =  100 #@param{type: 'number'}
options = model_and_diffusion_defaults()
options['use_fp16'] = has_cuda
options['timestep_respacing'] = str(timestep_respacing) # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
    model.convert_to_fp16()
model.to(device)
model.load_state_dict(load_checkpoint('base', device))
print('total base parameters', sum(x.numel() for x in model.parameters()))

# Create upsampler model.
options_up = model_and_diffusion_defaults_upsampler()
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
    model_up.convert_to_fp16()
model_up.to(device)
model_up.load_state_dict(load_checkpoint('upsample', device))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))

def show_images(batch: th.Tensor):
    """ Display a batch of images inline. """
    scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
    reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
    display(Image.fromarray(reshaped.numpy()))

def compose_language_descriptions(prompt):
  #@markdown `prompt`: when composing  multiple sentences, using `|` as the delimiter.
  prompts = [x.strip() for x in prompt.split('|')]

  batch_size = 1
  guidance_scale = 10 #@param{type: 'number'}
  # Tune this parameter to control the sharpness of 256x256 images.
  # A value of 1.0 is sharper, but sometimes results in grainy artifacts.
  upsample_temp = 0.980 #@param{type: 'number'}



  masks = [True] * len(prompts) + [False]
  # coefficients = th.tensor([0.5, 0.5], device=device).reshape(-1, 1, 1, 1)
  masks = th.tensor(masks, dtype=th.bool, device=device)
  # sampling function
  def model_fn(x_t, ts, **kwargs):
    half = x_t[:1]
    combined = th.cat([half] * x_t.size(0), dim=0)
    model_out = model(combined, ts, **kwargs)
    eps, rest = model_out[:, :3], model_out[:, 3:]
    cond_eps = eps[masks].mean(dim=0, keepdim=True)
    # cond_eps = (coefficients * eps[masks]).sum(dim=0)[None]
    uncond_eps = eps[~masks].mean(dim=0, keepdim=True)
    half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
    eps = th.cat([half_eps] * x_t.size(0), dim=0)
    return th.cat([eps, rest], dim=1)


  ##############################
  # Sample from the base model #
  ##############################

  # Create the text tokens to feed to the model.
  def sample_64(prompts):
    tokens_list = [model.tokenizer.encode(prompt) for prompt in prompts]
    outputs = [model.tokenizer.padded_tokens_and_mask(
        tokens, options['text_ctx']
    ) for tokens in tokens_list]

    cond_tokens, cond_masks = zip(*outputs)
    cond_tokens, cond_masks = list(cond_tokens), list(cond_masks)

    full_batch_size = batch_size * (len(prompts) + 1)
    uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
        [], options['text_ctx']
    )

    # Pack the tokens together into model kwargs.
    model_kwargs = dict(
        tokens=th.tensor(
            cond_tokens + [uncond_tokens], device=device
        ),
        mask=th.tensor(
            cond_masks + [uncond_mask],
            dtype=th.bool,
            device=device,
        ),
    )
    
    # Sample from the base model.
    model.del_cache()
    samples = diffusion.p_sample_loop(
        model_fn,
        (full_batch_size, 3, options["image_size"], options["image_size"]),
        device=device,
        clip_denoised=True,
        progress=True,
        model_kwargs=model_kwargs,
        cond_fn=None,
    )[:batch_size]
    model.del_cache()

    # Show the output
    return samples


  ##############################
  # Upsample the 64x64 samples #
  ##############################

  def upsampling_256(prompts, samples):
    tokens = model_up.tokenizer.encode("".join(prompts))
    tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
        tokens, options_up['text_ctx']
    )

    # Create the model conditioning dict.
    model_kwargs = dict(
        # Low-res image to upsample.
        low_res=((samples+1)*127.5).round()/127.5 - 1,

        # Text tokens
        tokens=th.tensor(
            [tokens] * batch_size, device=device
        ),
        mask=th.tensor(
            [mask] * batch_size,
            dtype=th.bool,
            device=device,
        ),
    )

    # Sample from the base model.
    model_up.del_cache()
    up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
    up_samples = diffusion_up.ddim_sample_loop(
        model_up,
        up_shape,
        noise=th.randn(up_shape, device=device) * upsample_temp,
        device=device,
        clip_denoised=True,
        progress=True,
        model_kwargs=model_kwargs,
        cond_fn=None,
    )[:batch_size]
    model_up.del_cache()

    # Show the output
    return up_samples


  # sampling 64x64 images
  samples = sample_64(prompts)
  # show_images(samples)

  # upsample from 64x64 to 256x256
  upsamples = upsampling_256(prompts, samples)
  # show_images(upsamples)

  out_img = upsamples[0].permute(1,2,0)
  out_img = (out_img+1)/2
  out_img = np.array(out_img.data.to('cpu'))
  return out_img

# prompt = "a camel | a forest" #@param{type: 'string'}
# out_img = compose_language_descriptions(prompt)

import gradio as gr
gr.Interface(fn=compose_language_descriptions, inputs='text', outputs='image').launch();