Shuang59 commited on
Commit
3111947
Β·
1 Parent(s): f07d91a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -13
README.md CHANGED
@@ -1,13 +1,24 @@
1
- ---
2
- title: Composable Diffusion
3
- emoji: 🐠
4
- colorFrom: gray
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 3.1.3
8
- app_file: app.py
9
- pinned: false
10
- license: afl-3.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Composable Diffusion
3
+ **Compositional Visual Generation with Composable Diffusion Models (ECCV 2022)**
4
+
5
+ [Webpage](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | [GitHub](https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch)
6
+
7
+ ## Overview
8
+ We propose to use **conjunction and negation** (negative prompts) operators for **compositional generation with conditional diffusion models in test time without any training**. For more details, please refer to our paper:
9
+
10
+ [Compositional Visual Generation with Composable Diffusion Models](https://arxiv.org/abs/2206.01714)
11
+ [Nan Liu](https://nanliu.io)*\*, [Shuang Li](https://people.csail.mit.edu/lishuang)*\*, [Yilun Du](https://yilundu.github.io)*\*, [Antonio Torralba](https://groups.csail.mit.edu/vision/torralbalab/), [Joshua B. Tenenbaum](https://mitibmwatsonailab.mit.edu/people/joshua-tenenbaum/), **ECCV 2022**
12
+
13
+ ## Citation
14
+
15
+ If you find our paper useful in your research, please cite the following paper:
16
+
17
+ ``` latex
18
+ @article{liu2022compositional,
19
+ title={Compositional Visual Generation with Composable Diffusion Models},
20
+ author={Liu, Nan and Li, Shuang and Du, Yilun and Torralba, Antonio and Tenenbaum, Joshua B},
21
+ journal={arXiv preprint arXiv:2206.01714},
22
+ year={2022}
23
+ }
24
+ ```