Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from transformers import WhisperProcessor, WhisperForConditionalGeneration, Whis
|
|
6 |
nltk.download("punkt")
|
7 |
from transformers import pipeline
|
8 |
import scipy.io.wavfile
|
9 |
-
|
10 |
|
11 |
model_name = "Shubham09/whisper31filescheck"
|
12 |
processor = WhisperProcessor.from_pretrained(model_name,task="transcribe")
|
@@ -24,8 +24,14 @@ def load_data(input_file):
|
|
24 |
if sample_rate !=16000:
|
25 |
speech = librosa.resample(speech, sample_rate,16000)
|
26 |
return speech
|
|
|
27 |
def write_to_file(input_file):
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
# with open("microphone-results.wav", "wb") as f:
|
30 |
# f.write(input_file.get_wav_data())
|
31 |
# import base64
|
@@ -39,8 +45,8 @@ def write_to_file(input_file):
|
|
39 |
# return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
40 |
pipe = pipeline(model="Shubham09/whisper31filescheck") # change to "your-username/the-name-you-picked"
|
41 |
|
42 |
-
def asr_transcript(
|
43 |
-
text = pipe("
|
44 |
return text
|
45 |
|
46 |
# speech = load_data(input_file)
|
|
|
6 |
nltk.download("punkt")
|
7 |
from transformers import pipeline
|
8 |
import scipy.io.wavfile
|
9 |
+
import soundfile as sf
|
10 |
|
11 |
model_name = "Shubham09/whisper31filescheck"
|
12 |
processor = WhisperProcessor.from_pretrained(model_name,task="transcribe")
|
|
|
24 |
if sample_rate !=16000:
|
25 |
speech = librosa.resample(speech, sample_rate,16000)
|
26 |
return speech
|
27 |
+
|
28 |
def write_to_file(input_file):
|
29 |
+
fs = 16000
|
30 |
+
sf.write("my_Audio_file.flac",input_file, fs)
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
#scipy.io.wavfile.write("microphone-result.wav")
|
35 |
# with open("microphone-results.wav", "wb") as f:
|
36 |
# f.write(input_file.get_wav_data())
|
37 |
# import base64
|
|
|
45 |
# return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
46 |
pipe = pipeline(model="Shubham09/whisper31filescheck") # change to "your-username/the-name-you-picked"
|
47 |
|
48 |
+
def asr_transcript():
|
49 |
+
text = pipe("my_Audio_file.flac")["text"]
|
50 |
return text
|
51 |
|
52 |
# speech = load_data(input_file)
|