Shubham09 commited on
Commit
dfbe1d3
·
1 Parent(s): 3587687

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -4
app.py CHANGED
@@ -7,6 +7,7 @@ nltk.download("punkt")
7
  from transformers import pipeline
8
  import scipy.io.wavfile
9
  import soundfile as sf
 
10
 
11
  model_name = "Shubham09/whisper31filescheck"
12
  processor = WhisperProcessor.from_pretrained(model_name,task="transcribe")
@@ -28,6 +29,13 @@ def load_data(input_file):
28
  def write_to_file(input_file):
29
  fs = 16000
30
  sf.write("my_Audio_file.flac",input_file, fs)
 
 
 
 
 
 
 
31
 
32
 
33
 
@@ -39,14 +47,12 @@ def write_to_file(input_file):
39
  # decode_string = base64.b64decode(input_file)
40
  # wav_file.write(decode_string)
41
 
42
- # def correct_casing(input_sentence):
43
 
44
- # sentences = nltk.sent_tokenize(input_sentence)
45
- # return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
46
  pipe = pipeline(model="Shubham09/whisper31filescheck") # change to "your-username/the-name-you-picked"
47
 
48
  def asr_transcript(audio):
49
- audio = "my_Audio_file.flac"
50
  text = pipe(audio)["text"]
51
  return text
52
 
 
7
  from transformers import pipeline
8
  import scipy.io.wavfile
9
  import soundfile as sf
10
+ from huggingface_hub import HfApi, CommitOperationAdd, CommitOperationDelete
11
 
12
  model_name = "Shubham09/whisper31filescheck"
13
  processor = WhisperProcessor.from_pretrained(model_name,task="transcribe")
 
29
  def write_to_file(input_file):
30
  fs = 16000
31
  sf.write("my_Audio_file.flac",input_file, fs)
32
+ api = HfApi()
33
+ operations = [
34
+ CommitOperationAdd(path_in_repo="my_Audio_file.flac", path_or_fileobj="~/repo/my_Audio_file.flac"),
35
+ # CommitOperationAdd(path_in_repo="weights.h5", path_or_fileobj="~/repo/weights-final.h5"),
36
+ # CommitOperationDelete(path_in_repo="old-weights.h5"),
37
+ # CommitOperationDelete(path_in_repo="logs/"),
38
+ ]
39
 
40
 
41
 
 
47
  # decode_string = base64.b64decode(input_file)
48
  # wav_file.write(decode_string)
49
 
 
50
 
51
+
 
52
  pipe = pipeline(model="Shubham09/whisper31filescheck") # change to "your-username/the-name-you-picked"
53
 
54
  def asr_transcript(audio):
55
+ audio = "~/repo/my_Audio_file.flac"
56
  text = pipe(audio)["text"]
57
  return text
58