|
import gradio as gr |
|
from tensorflow import keras as k |
|
import numpy as np |
|
|
|
loaded_CNN = k.models.load_model('Digit_classification_model2.h5') |
|
|
|
def predict(img): |
|
img_array = np.array(img) |
|
img_array = img_array.reshape(1, 28, 28) |
|
img_array = img_array/255 |
|
pred = loaded_CNN.predict(img_array) |
|
print(pred) |
|
return np.argmax(pred) |
|
|
|
iface = gr.Interface(predict, inputs = 'sketchpad', |
|
outputs = 'text', |
|
allow_flagging = 'never', |
|
description = 'Project : Recognizing hardwritten digits ' |
|
description = 'In this project we will discover the MNIST handwritten digit recognition problem and we will develop a deep learning model in Python using the Keras library that will be capable of achieving excellent results. Now some questions come to mind' |
|
description = '-----------------------------------------------' |
|
description = 'Draw a Single Digit Below... (Draw in the centre for best results)') |
|
iface.launch(debug = "True", width = 500, height = 500) |
|
|
|
|
|
|
|
|