ShuklaShreyansh commited on
Commit
ac616ba
·
verified ·
1 Parent(s): c0aeb68
Files changed (1) hide show
  1. app.py +41 -39
app.py CHANGED
@@ -1,39 +1,41 @@
1
- import tensorflow as tf
2
- import pickle
3
- import gradio as gr
4
- import numpy as np
5
- import json
6
-
7
-
8
- with open('tokenizer.json') as file:
9
- tokenizer_data = file.read()
10
- tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_data)
11
-
12
-
13
- def Infernce_Pipe(text,max_length = 100):
14
- model = tf.keras.models.load_model("LSTM_senti.h5")
15
-
16
- sequences = tokenizer.texts_to_sequences([text])
17
-
18
- padded = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=max_length, padding='post', truncating='post')
19
-
20
- pred = model.predict(padded)
21
- predicted_index = np.argmax(pred)
22
- # Define the label mapping
23
- labels = ['Negative', 'Neutral', 'Positive']
24
-
25
- # Map index to label
26
- predicted_label = labels[predicted_index]
27
-
28
- return predicted_label
29
-
30
- interface = gr.Interface(
31
- fn=Infernce_Pipe,
32
- inputs=gr.Textbox(placeholder="Enter text here..."),
33
- outputs=gr.Text(label="Prediction"),
34
- title="Sentiment Analysis on Customer Review",
35
- description="Enter a review to get its sentiment classification (Negative, Neutral, Positive)."
36
- )
37
-
38
- interface.launch(share=True)
39
-
 
 
 
1
+ import tensorflow as tf
2
+ import pickle
3
+ import gradio as gr
4
+ import numpy as np
5
+ import json
6
+
7
+
8
+ with open('tokenizer.json') as file:
9
+ tokenizer_data = file.read()
10
+ tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_data)
11
+
12
+
13
+ def Infernce_Pipe(text,max_length = 100):
14
+ model = tf.keras.models.load_model("LSTM_senti.h5")
15
+
16
+ sequences = tokenizer.texts_to_sequences([text])
17
+
18
+ padded = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=max_length, padding='post', truncating='post')
19
+
20
+ pred = model.predict(padded)
21
+ predicted_index = np.argmax(pred)
22
+ # Define the label mapping
23
+ labels = ['Negative', 'Neutral', 'Positive']
24
+
25
+ # Map index to label
26
+ predicted_label = labels[predicted_index]
27
+
28
+ return predicted_label
29
+
30
+ interface = gr.Interface(
31
+ fn=Infernce_Pipe,
32
+ inputs=gr.Textbox(placeholder="Enter text here..."),
33
+ outputs=gr.Text(label="Prediction"),
34
+ title="Sentiment Analysis on Customer Review",
35
+ description="Enter a review to get its sentiment classification (Negative, Neutral, Positive). \n\n **If you find this model helpful, please like it using the button above in the navigation bar!**",
36
+ theme="huggingface"
37
+ )
38
+
39
+ interface.launch(share=True)
40
+
41
+