File size: 63,213 Bytes
bb63937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
# Copyright 2024 The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import math
import os
import shutil
from pathlib import Path
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torchvision.transforms as TT
import transformers
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
from tqdm.auto import tqdm
from transformers import AutoTokenizer, T5EncoderModel, T5Tokenizer

import diffusers
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.optimization import get_scheduler
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
from diffusers.training_utils import cast_training_params, free_memory
from diffusers.utils import check_min_version, convert_unet_state_dict_to_peft, export_to_video, is_wandb_available
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.torch_utils import is_compiled_module


if is_wandb_available():
    import wandb

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")

logger = get_logger(__name__)


def get_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script for CogVideoX.")

    # Model information
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )

    # Dataset information
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--instance_data_root",
        type=str,
        default=None,
        help=("A folder containing the training data."),
    )
    parser.add_argument(
        "--video_column",
        type=str,
        default="video",
        help="The column of the dataset containing videos. Or, the name of the file in `--instance_data_root` folder containing the line-separated path to video data.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--instance_data_root` folder containing the line-separated instance prompts.",
    )
    parser.add_argument(
        "--id_token", type=str, default=None, help="Identifier token appended to the start of each prompt if provided."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )

    # Validation
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
    )
    parser.add_argument(
        "--validation_prompt_separator",
        type=str,
        default=":::",
        help="String that separates multiple validation prompts",
    )
    parser.add_argument(
        "--num_validation_videos",
        type=int,
        default=1,
        help="Number of videos that should be generated during validation per `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run validation every X epochs. Validation consists of running the prompt `args.validation_prompt` multiple times: `args.num_validation_videos`."
        ),
    )
    parser.add_argument(
        "--guidance_scale",
        type=float,
        default=6,
        help="The guidance scale to use while sampling validation videos.",
    )
    parser.add_argument(
        "--use_dynamic_cfg",
        action="store_true",
        default=False,
        help="Whether or not to use the default cosine dynamic guidance schedule when sampling validation videos.",
    )

    # Training information
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--rank",
        type=int,
        default=128,
        help=("The dimension of the LoRA update matrices."),
    )
    parser.add_argument(
        "--lora_alpha",
        type=float,
        default=128,
        help=("The scaling factor to scale LoRA weight update. The actual scaling factor is `lora_alpha / rank`"),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="cogvideox-lora",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--height",
        type=int,
        default=480,
        help="All input videos are resized to this height.",
    )
    parser.add_argument(
        "--width",
        type=int,
        default=720,
        help="All input videos are resized to this width.",
    )
    parser.add_argument(
        "--video_reshape_mode",
        type=str,
        default="center",
        help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']",
    )
    parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.")
    parser.add_argument(
        "--max_num_frames", type=int, default=49, help="All input videos will be truncated to these many frames."
    )
    parser.add_argument(
        "--skip_frames_start",
        type=int,
        default=0,
        help="Number of frames to skip from the beginning of each input video. Useful if training data contains intro sequences.",
    )
    parser.add_argument(
        "--skip_frames_end",
        type=int,
        default=0,
        help="Number of frames to skip from the end of each input video. Useful if training data contains outro sequences.",
    )
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip videos horizontally",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--enable_slicing",
        action="store_true",
        default=False,
        help="Whether or not to use VAE slicing for saving memory.",
    )
    parser.add_argument(
        "--enable_tiling",
        action="store_true",
        default=False,
        help="Whether or not to use VAE tiling for saving memory.",
    )

    # Optimizer
    parser.add_argument(
        "--optimizer",
        type=lambda s: s.lower(),
        default="adam",
        choices=["adam", "adamw", "prodigy"],
        help=("The optimizer type to use."),
    )
    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
    )
    parser.add_argument(
        "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--adam_beta2", type=float, default=0.95, help="The beta2 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--prodigy_beta3",
        type=float,
        default=None,
        help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.",
    )
    parser.add_argument("--prodigy_decouple", action="store_true", help="Use AdamW style decoupled weight decay")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
    parser.add_argument(
        "--adam_epsilon",
        type=float,
        default=1e-08,
        help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
    )
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--prodigy_use_bias_correction", action="store_true", help="Turn on Adam's bias correction.")
    parser.add_argument(
        "--prodigy_safeguard_warmup",
        action="store_true",
        help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage.",
    )

    # Other information
    parser.add_argument("--tracker_name", type=str, default=None, help="Project tracker name")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help="Directory where logs are stored.",
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default=None,
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )

    return parser.parse_args()


class VideoDataset(Dataset):
    def __init__(
        self,
        instance_data_root: Optional[str] = None,
        dataset_name: Optional[str] = None,
        dataset_config_name: Optional[str] = None,
        caption_column: str = "text",
        video_column: str = "video",
        height: int = 480,
        width: int = 720,
        video_reshape_mode: str = "center",
        fps: int = 8,
        max_num_frames: int = 49,
        skip_frames_start: int = 0,
        skip_frames_end: int = 0,
        cache_dir: Optional[str] = None,
        id_token: Optional[str] = None,
    ) -> None:
        super().__init__()

        self.instance_data_root = Path(instance_data_root) if instance_data_root is not None else None
        self.dataset_name = dataset_name
        self.dataset_config_name = dataset_config_name
        self.caption_column = caption_column
        self.video_column = video_column
        self.height = height
        self.width = width
        self.video_reshape_mode = video_reshape_mode
        self.fps = fps
        self.max_num_frames = max_num_frames
        self.skip_frames_start = skip_frames_start
        self.skip_frames_end = skip_frames_end
        self.cache_dir = cache_dir
        self.id_token = id_token or ""

        if dataset_name is not None:
            self.instance_prompts, self.instance_video_paths = self._load_dataset_from_hub()
        else:
            self.instance_prompts, self.instance_video_paths = self._load_dataset_from_local_path()

        self.num_instance_videos = len(self.instance_video_paths)
        if self.num_instance_videos != len(self.instance_prompts):
            raise ValueError(
                f"Expected length of instance prompts and videos to be the same but found {len(self.instance_prompts)=} and {len(self.instance_video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset."
            )

        self.instance_videos = self._preprocess_data()

    def __len__(self):
        return self.num_instance_videos

    def __getitem__(self, index):
        return {
            "instance_prompt": self.id_token + self.instance_prompts[index],
            "instance_video": self.instance_videos[index],
        }

    def _load_dataset_from_hub(self):
        try:
            from datasets import load_dataset
        except ImportError:
            raise ImportError(
                "You are trying to load your data using the datasets library. If you wish to train using custom "
                "captions please install the datasets library: `pip install datasets`. If you wish to load a "
                "local folder containing images only, specify --instance_data_root instead."
            )

        # Downloading and loading a dataset from the hub. See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
        dataset = load_dataset(
            self.dataset_name,
            self.dataset_config_name,
            cache_dir=self.cache_dir,
        )
        column_names = dataset["train"].column_names

        if self.video_column is None:
            video_column = column_names[0]
            logger.info(f"`video_column` defaulting to {video_column}")
        else:
            video_column = self.video_column
            if video_column not in column_names:
                raise ValueError(
                    f"`--video_column` value '{video_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                )

        if self.caption_column is None:
            caption_column = column_names[1]
            logger.info(f"`caption_column` defaulting to {caption_column}")
        else:
            caption_column = self.caption_column
            if self.caption_column not in column_names:
                raise ValueError(
                    f"`--caption_column` value '{self.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                )

        instance_prompts = dataset["train"][caption_column]
        instance_videos = [Path(self.instance_data_root, filepath) for filepath in dataset["train"][video_column]]

        return instance_prompts, instance_videos

    def _load_dataset_from_local_path(self):
        if not self.instance_data_root.exists():
            raise ValueError("Instance videos root folder does not exist")

        prompt_path = self.instance_data_root.joinpath(self.caption_column)
        video_path = self.instance_data_root.joinpath(self.video_column)

        if not prompt_path.exists() or not prompt_path.is_file():
            raise ValueError(
                "Expected `--caption_column` to be path to a file in `--instance_data_root` containing line-separated text prompts."
            )
        if not video_path.exists() or not video_path.is_file():
            raise ValueError(
                "Expected `--video_column` to be path to a file in `--instance_data_root` containing line-separated paths to video data in the same directory."
            )

        with open(prompt_path, "r", encoding="utf-8") as file:
            instance_prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
        with open(video_path, "r", encoding="utf-8") as file:
            instance_videos = [
                self.instance_data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0
            ]

        if any(not path.is_file() for path in instance_videos):
            raise ValueError(
                "Expected '--video_column' to be a path to a file in `--instance_data_root` containing line-separated paths to video data but found atleast one path that is not a valid file."
            )

        return instance_prompts, instance_videos

    def _resize_for_rectangle_crop(self, arr):
        image_size = self.height, self.width
        reshape_mode = self.video_reshape_mode
        if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
            arr = resize(
                arr,
                size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
                interpolation=InterpolationMode.BICUBIC,
            )
        else:
            arr = resize(
                arr,
                size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
                interpolation=InterpolationMode.BICUBIC,
            )

        h, w = arr.shape[2], arr.shape[3]
        arr = arr.squeeze(0)

        delta_h = h - image_size[0]
        delta_w = w - image_size[1]

        if reshape_mode == "random" or reshape_mode == "none":
            top = np.random.randint(0, delta_h + 1)
            left = np.random.randint(0, delta_w + 1)
        elif reshape_mode == "center":
            top, left = delta_h // 2, delta_w // 2
        else:
            raise NotImplementedError
        arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
        return arr

    def _preprocess_data(self):
        try:
            import decord
        except ImportError:
            raise ImportError(
                "The `decord` package is required for loading the video dataset. Install with `pip install decord`"
            )

        decord.bridge.set_bridge("torch")

        progress_dataset_bar = tqdm(
            range(0, len(self.instance_video_paths)),
            desc="Loading progress resize and crop videos",
        )
        videos = []

        for filename in self.instance_video_paths:
            video_reader = decord.VideoReader(uri=filename.as_posix())
            video_num_frames = len(video_reader)

            start_frame = min(self.skip_frames_start, video_num_frames)
            end_frame = max(0, video_num_frames - self.skip_frames_end)
            if end_frame <= start_frame:
                frames = video_reader.get_batch([start_frame])
            elif end_frame - start_frame <= self.max_num_frames:
                frames = video_reader.get_batch(list(range(start_frame, end_frame)))
            else:
                indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames))
                frames = video_reader.get_batch(indices)

            # Ensure that we don't go over the limit
            frames = frames[: self.max_num_frames]
            selected_num_frames = frames.shape[0]

            # Choose first (4k + 1) frames as this is how many is required by the VAE
            remainder = (3 + (selected_num_frames % 4)) % 4
            if remainder != 0:
                frames = frames[:-remainder]
            selected_num_frames = frames.shape[0]

            assert (selected_num_frames - 1) % 4 == 0

            # Training transforms
            frames = (frames - 127.5) / 127.5
            frames = frames.permute(0, 3, 1, 2)  # [F, C, H, W]
            progress_dataset_bar.set_description(
                f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}"
            )
            frames = self._resize_for_rectangle_crop(frames)
            videos.append(frames.contiguous())  # [F, C, H, W]
            progress_dataset_bar.update(1)

        progress_dataset_bar.close()
        return videos


def save_model_card(
    repo_id: str,
    videos=None,
    base_model: str = None,
    validation_prompt=None,
    repo_folder=None,
    fps=8,
):
    widget_dict = []
    if videos is not None:
        for i, video in enumerate(videos):
            export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4", fps=fps))
            widget_dict.append(
                {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"video_{i}.mp4"}}
            )

    model_description = f"""
# CogVideoX LoRA - {repo_id}

<Gallery />

## Model description

These are {repo_id} LoRA weights for {base_model}.

The weights were trained using the [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py).

Was LoRA for the text encoder enabled? No.

## Download model

[Download the *.safetensors LoRA]({repo_id}/tree/main) in the Files & versions tab.

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import CogVideoXPipeline
import torch

pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("{repo_id}", weight_name="pytorch_lora_weights.safetensors", adapter_name=["cogvideox-lora"])

# The LoRA adapter weights are determined by what was used for training.
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64.
# It can be made lower or higher from what was used in training to decrease or amplify the effect
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows.
pipe.set_adapters(["cogvideox-lora"], [32 / 64])

video = pipe("{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)

## License

Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE) and [here](https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE).
"""
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="other",
        base_model=base_model,
        prompt=validation_prompt,
        model_description=model_description,
        widget=widget_dict,
    )
    tags = [
        "text-to-video",
        "diffusers-training",
        "diffusers",
        "lora",
        "cogvideox",
        "cogvideox-diffusers",
        "template:sd-lora",
    ]

    model_card = populate_model_card(model_card, tags=tags)
    model_card.save(os.path.join(repo_folder, "README.md"))


def log_validation(
    pipe,
    args,
    accelerator,
    pipeline_args,
    epoch,
    is_final_validation: bool = False,
):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}."
    )
    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

    if "variance_type" in pipe.scheduler.config:
        variance_type = pipe.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

    pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args)
    pipe = pipe.to(accelerator.device)
    # pipe.set_progress_bar_config(disable=True)

    # run inference
    generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None

    videos = []
    for _ in range(args.num_validation_videos):
        pt_images = pipe(**pipeline_args, generator=generator, output_type="pt").frames[0]
        pt_images = torch.stack([pt_images[i] for i in range(pt_images.shape[0])])

        image_np = VaeImageProcessor.pt_to_numpy(pt_images)
        image_pil = VaeImageProcessor.numpy_to_pil(image_np)

        videos.append(image_pil)

    for tracker in accelerator.trackers:
        phase_name = "test" if is_final_validation else "validation"
        if tracker.name == "wandb":
            video_filenames = []
            for i, video in enumerate(videos):
                prompt = (
                    pipeline_args["prompt"][:25]
                    .replace(" ", "_")
                    .replace(" ", "_")
                    .replace("'", "_")
                    .replace('"', "_")
                    .replace("/", "_")
                )
                filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4")
                export_to_video(video, filename, fps=8)
                video_filenames.append(filename)

            tracker.log(
                {
                    phase_name: [
                        wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}")
                        for i, filename in enumerate(video_filenames)
                    ]
                }
            )

    del pipe
    free_memory()

    return videos


def _get_t5_prompt_embeds(
    tokenizer: T5Tokenizer,
    text_encoder: T5EncoderModel,
    prompt: Union[str, List[str]],
    num_videos_per_prompt: int = 1,
    max_sequence_length: int = 226,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    text_input_ids=None,
):
    prompt = [prompt] if isinstance(prompt, str) else prompt
    batch_size = len(prompt)

    if tokenizer is not None:
        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
    else:
        if text_input_ids is None:
            raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.")

    prompt_embeds = text_encoder(text_input_ids.to(device))[0]
    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

    # duplicate text embeddings for each generation per prompt, using mps friendly method
    _, seq_len, _ = prompt_embeds.shape
    prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)

    return prompt_embeds


def encode_prompt(
    tokenizer: T5Tokenizer,
    text_encoder: T5EncoderModel,
    prompt: Union[str, List[str]],
    num_videos_per_prompt: int = 1,
    max_sequence_length: int = 226,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    text_input_ids=None,
):
    prompt = [prompt] if isinstance(prompt, str) else prompt
    prompt_embeds = _get_t5_prompt_embeds(
        tokenizer,
        text_encoder,
        prompt=prompt,
        num_videos_per_prompt=num_videos_per_prompt,
        max_sequence_length=max_sequence_length,
        device=device,
        dtype=dtype,
        text_input_ids=text_input_ids,
    )
    return prompt_embeds


def compute_prompt_embeddings(
    tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False
):
    if requires_grad:
        prompt_embeds = encode_prompt(
            tokenizer,
            text_encoder,
            prompt,
            num_videos_per_prompt=1,
            max_sequence_length=max_sequence_length,
            device=device,
            dtype=dtype,
        )
    else:
        with torch.no_grad():
            prompt_embeds = encode_prompt(
                tokenizer,
                text_encoder,
                prompt,
                num_videos_per_prompt=1,
                max_sequence_length=max_sequence_length,
                device=device,
                dtype=dtype,
            )
    return prompt_embeds


def prepare_rotary_positional_embeddings(
    height: int,
    width: int,
    num_frames: int,
    vae_scale_factor_spatial: int = 8,
    patch_size: int = 2,
    attention_head_dim: int = 64,
    device: Optional[torch.device] = None,
    base_height: int = 480,
    base_width: int = 720,
) -> Tuple[torch.Tensor, torch.Tensor]:
    grid_height = height // (vae_scale_factor_spatial * patch_size)
    grid_width = width // (vae_scale_factor_spatial * patch_size)
    base_size_width = base_width // (vae_scale_factor_spatial * patch_size)
    base_size_height = base_height // (vae_scale_factor_spatial * patch_size)

    grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height)
    freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
        embed_dim=attention_head_dim,
        crops_coords=grid_crops_coords,
        grid_size=(grid_height, grid_width),
        temporal_size=num_frames,
    )

    freqs_cos = freqs_cos.to(device=device)
    freqs_sin = freqs_sin.to(device=device)
    return freqs_cos, freqs_sin


def get_optimizer(args, params_to_optimize, use_deepspeed: bool = False):
    # Use DeepSpeed optimzer
    if use_deepspeed:
        from accelerate.utils import DummyOptim

        return DummyOptim(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            eps=args.adam_epsilon,
            weight_decay=args.adam_weight_decay,
        )

    # Optimizer creation
    supported_optimizers = ["adam", "adamw", "prodigy"]
    if args.optimizer not in supported_optimizers:
        logger.warning(
            f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include {supported_optimizers}. Defaulting to AdamW"
        )
        args.optimizer = "adamw"

    if args.use_8bit_adam and args.optimizer.lower() not in ["adam", "adamw"]:
        logger.warning(
            f"use_8bit_adam is ignored when optimizer is not set to 'Adam' or 'AdamW'. Optimizer was "
            f"set to {args.optimizer.lower()}"
        )

    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

    if args.optimizer.lower() == "adamw":
        optimizer_class = bnb.optim.AdamW8bit if args.use_8bit_adam else torch.optim.AdamW

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            eps=args.adam_epsilon,
            weight_decay=args.adam_weight_decay,
        )
    elif args.optimizer.lower() == "adam":
        optimizer_class = bnb.optim.Adam8bit if args.use_8bit_adam else torch.optim.Adam

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            eps=args.adam_epsilon,
            weight_decay=args.adam_weight_decay,
        )
    elif args.optimizer.lower() == "prodigy":
        try:
            import prodigyopt
        except ImportError:
            raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")

        optimizer_class = prodigyopt.Prodigy

        if args.learning_rate <= 0.1:
            logger.warning(
                "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
            )

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            beta3=args.prodigy_beta3,
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            decouple=args.prodigy_decouple,
            use_bias_correction=args.prodigy_use_bias_correction,
            safeguard_warmup=args.prodigy_safeguard_warmup,
        )

    return optimizer


def main(args):
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

    if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
    kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
        kwargs_handlers=[kwargs],
    )

    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name,
                exist_ok=True,
            ).repo_id

    # Prepare models and scheduler
    tokenizer = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
    )

    text_encoder = T5EncoderModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )

    # CogVideoX-2b weights are stored in float16
    # CogVideoX-5b and CogVideoX-5b-I2V weights are stored in bfloat16
    load_dtype = torch.bfloat16 if "5b" in args.pretrained_model_name_or_path.lower() else torch.float16
    transformer = CogVideoXTransformer3DModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="transformer",
        torch_dtype=load_dtype,
        revision=args.revision,
        variant=args.variant,
    )

    vae = AutoencoderKLCogVideoX.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
    )

    scheduler = CogVideoXDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")

    if args.enable_slicing:
        vae.enable_slicing()
    if args.enable_tiling:
        vae.enable_tiling()

    # We only train the additional adapter LoRA layers
    text_encoder.requires_grad_(False)
    transformer.requires_grad_(False)
    vae.requires_grad_(False)

    # For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.state.deepspeed_plugin:
        # DeepSpeed is handling precision, use what's in the DeepSpeed config
        if (
            "fp16" in accelerator.state.deepspeed_plugin.deepspeed_config
            and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"]
        ):
            weight_dtype = torch.float16
        if (
            "bf16" in accelerator.state.deepspeed_plugin.deepspeed_config
            and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"]
        ):
            weight_dtype = torch.float16
    else:
        if accelerator.mixed_precision == "fp16":
            weight_dtype = torch.float16
        elif accelerator.mixed_precision == "bf16":
            weight_dtype = torch.bfloat16

    if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

    text_encoder.to(accelerator.device, dtype=weight_dtype)
    transformer.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)

    if args.gradient_checkpointing:
        transformer.enable_gradient_checkpointing()

    # now we will add new LoRA weights to the attention layers
    transformer_lora_config = LoraConfig(
        r=args.rank,
        lora_alpha=args.lora_alpha,
        init_lora_weights=True,
        target_modules=["to_k", "to_q", "to_v", "to_out.0"],
    )
    transformer.add_adapter(transformer_lora_config)

    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        if accelerator.is_main_process:
            transformer_lora_layers_to_save = None

            for model in models:
                if isinstance(model, type(unwrap_model(transformer))):
                    transformer_lora_layers_to_save = get_peft_model_state_dict(model)
                else:
                    raise ValueError(f"unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            CogVideoXPipeline.save_lora_weights(
                output_dir,
                transformer_lora_layers=transformer_lora_layers_to_save,
            )

    def load_model_hook(models, input_dir):
        transformer_ = None

        while len(models) > 0:
            model = models.pop()

            if isinstance(model, type(unwrap_model(transformer))):
                transformer_ = model
            else:
                raise ValueError(f"Unexpected save model: {model.__class__}")

        lora_state_dict = CogVideoXPipeline.lora_state_dict(input_dir)

        transformer_state_dict = {
            f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.")
        }
        transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict)
        incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default")
        if incompatible_keys is not None:
            # check only for unexpected keys
            unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
            if unexpected_keys:
                logger.warning(
                    f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                    f" {unexpected_keys}. "
                )

        # Make sure the trainable params are in float32. This is again needed since the base models
        # are in `weight_dtype`. More details:
        # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
        if args.mixed_precision == "fp16":
            # only upcast trainable parameters (LoRA) into fp32
            cast_training_params([transformer_])

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32 and torch.cuda.is_available():
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Make sure the trainable params are in float32.
    if args.mixed_precision == "fp16":
        # only upcast trainable parameters (LoRA) into fp32
        cast_training_params([transformer], dtype=torch.float32)

    transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))

    # Optimization parameters
    transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate}
    params_to_optimize = [transformer_parameters_with_lr]

    use_deepspeed_optimizer = (
        accelerator.state.deepspeed_plugin is not None
        and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config
    )
    use_deepspeed_scheduler = (
        accelerator.state.deepspeed_plugin is not None
        and "scheduler" in accelerator.state.deepspeed_plugin.deepspeed_config
    )

    optimizer = get_optimizer(args, params_to_optimize, use_deepspeed=use_deepspeed_optimizer)

    # Dataset and DataLoader
    train_dataset = VideoDataset(
        instance_data_root=args.instance_data_root,
        dataset_name=args.dataset_name,
        dataset_config_name=args.dataset_config_name,
        caption_column=args.caption_column,
        video_column=args.video_column,
        height=args.height,
        width=args.width,
        video_reshape_mode=args.video_reshape_mode,
        fps=args.fps,
        max_num_frames=args.max_num_frames,
        skip_frames_start=args.skip_frames_start,
        skip_frames_end=args.skip_frames_end,
        cache_dir=args.cache_dir,
        id_token=args.id_token,
    )

    def encode_video(video, bar):
        bar.update(1)
        video = video.to(accelerator.device, dtype=vae.dtype).unsqueeze(0)
        video = video.permute(0, 2, 1, 3, 4)  # [B, C, F, H, W]
        latent_dist = vae.encode(video).latent_dist
        return latent_dist

    progress_encode_bar = tqdm(
        range(0, len(train_dataset.instance_videos)),
        desc="Loading Encode videos",
    )
    train_dataset.instance_videos = [
        encode_video(video, progress_encode_bar) for video in train_dataset.instance_videos
    ]
    progress_encode_bar.close()

    def collate_fn(examples):
        videos = [example["instance_video"].sample() * vae.config.scaling_factor for example in examples]
        prompts = [example["instance_prompt"] for example in examples]

        videos = torch.cat(videos)
        videos = videos.permute(0, 2, 1, 3, 4)
        videos = videos.to(memory_format=torch.contiguous_format).float()

        return {
            "videos": videos,
            "prompts": prompts,
        }

    train_dataloader = DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=collate_fn,
        num_workers=args.dataloader_num_workers,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    if use_deepspeed_scheduler:
        from accelerate.utils import DummyScheduler

        lr_scheduler = DummyScheduler(
            name=args.lr_scheduler,
            optimizer=optimizer,
            total_num_steps=args.max_train_steps * accelerator.num_processes,
            num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        )
    else:
        lr_scheduler = get_scheduler(
            args.lr_scheduler,
            optimizer=optimizer,
            num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
            num_training_steps=args.max_train_steps * accelerator.num_processes,
            num_cycles=args.lr_num_cycles,
            power=args.lr_power,
        )

    # Prepare everything with our `accelerator`.
    transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        transformer, optimizer, train_dataloader, lr_scheduler
    )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        tracker_name = args.tracker_name or "cogvideox-lora"
        accelerator.init_trackers(tracker_name, config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"])

    logger.info("***** Running training *****")
    logger.info(f"  Num trainable parameters = {num_trainable_parameters}")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if not args.resume_from_checkpoint:
        initial_global_step = 0
    else:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
    vae_scale_factor_spatial = 2 ** (len(vae.config.block_out_channels) - 1)

    # For DeepSpeed training
    model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config

    for epoch in range(first_epoch, args.num_train_epochs):
        transformer.train()

        for step, batch in enumerate(train_dataloader):
            models_to_accumulate = [transformer]

            with accelerator.accumulate(models_to_accumulate):
                model_input = batch["videos"].to(dtype=weight_dtype)  # [B, F, C, H, W]
                prompts = batch["prompts"]

                # encode prompts
                prompt_embeds = compute_prompt_embeddings(
                    tokenizer,
                    text_encoder,
                    prompts,
                    model_config.max_text_seq_length,
                    accelerator.device,
                    weight_dtype,
                    requires_grad=False,
                )

                # Sample noise that will be added to the latents
                noise = torch.randn_like(model_input)
                batch_size, num_frames, num_channels, height, width = model_input.shape

                # Sample a random timestep for each image
                timesteps = torch.randint(
                    0, scheduler.config.num_train_timesteps, (batch_size,), device=model_input.device
                )
                timesteps = timesteps.long()

                # Prepare rotary embeds
                image_rotary_emb = (
                    prepare_rotary_positional_embeddings(
                        height=args.height,
                        width=args.width,
                        num_frames=num_frames,
                        vae_scale_factor_spatial=vae_scale_factor_spatial,
                        patch_size=model_config.patch_size,
                        attention_head_dim=model_config.attention_head_dim,
                        device=accelerator.device,
                    )
                    if model_config.use_rotary_positional_embeddings
                    else None
                )

                # Add noise to the model input according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_model_input = scheduler.add_noise(model_input, noise, timesteps)

                # Predict the noise residual
                model_output = transformer(
                    hidden_states=noisy_model_input,
                    encoder_hidden_states=prompt_embeds,
                    timestep=timesteps,
                    image_rotary_emb=image_rotary_emb,
                    return_dict=False,
                )[0]
                model_pred = scheduler.get_velocity(model_output, noisy_model_input, timesteps)

                alphas_cumprod = scheduler.alphas_cumprod[timesteps]
                weights = 1 / (1 - alphas_cumprod)
                while len(weights.shape) < len(model_pred.shape):
                    weights = weights.unsqueeze(-1)

                target = model_input

                loss = torch.mean((weights * (model_pred - target) ** 2).reshape(batch_size, -1), dim=1)
                loss = loss.mean()
                accelerator.backward(loss)

                if accelerator.sync_gradients:
                    params_to_clip = transformer.parameters()
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)

                if accelerator.state.deepspeed_plugin is None:
                    optimizer.step()
                    optimizer.zero_grad()

                lr_scheduler.step()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"Removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

        if accelerator.is_main_process:
            if args.validation_prompt is not None and (epoch + 1) % args.validation_epochs == 0:
                # Create pipeline
                pipe = CogVideoXPipeline.from_pretrained(
                    args.pretrained_model_name_or_path,
                    transformer=unwrap_model(transformer),
                    text_encoder=unwrap_model(text_encoder),
                    scheduler=scheduler,
                    revision=args.revision,
                    variant=args.variant,
                    torch_dtype=weight_dtype,
                )

                validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
                for validation_prompt in validation_prompts:
                    pipeline_args = {
                        "prompt": validation_prompt,
                        "guidance_scale": args.guidance_scale,
                        "use_dynamic_cfg": args.use_dynamic_cfg,
                        "height": args.height,
                        "width": args.width,
                    }

                    validation_outputs = log_validation(
                        pipe=pipe,
                        args=args,
                        accelerator=accelerator,
                        pipeline_args=pipeline_args,
                        epoch=epoch,
                    )

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        transformer = unwrap_model(transformer)
        dtype = (
            torch.float16
            if args.mixed_precision == "fp16"
            else torch.bfloat16
            if args.mixed_precision == "bf16"
            else torch.float32
        )
        transformer = transformer.to(dtype)
        transformer_lora_layers = get_peft_model_state_dict(transformer)

        CogVideoXPipeline.save_lora_weights(
            save_directory=args.output_dir,
            transformer_lora_layers=transformer_lora_layers,
        )

        # Cleanup trained models to save memory
        del transformer
        free_memory()

        # Final test inference
        pipe = CogVideoXPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            revision=args.revision,
            variant=args.variant,
            torch_dtype=weight_dtype,
        )
        pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config)

        if args.enable_slicing:
            pipe.vae.enable_slicing()
        if args.enable_tiling:
            pipe.vae.enable_tiling()

        # Load LoRA weights
        lora_scaling = args.lora_alpha / args.rank
        pipe.load_lora_weights(args.output_dir, adapter_name="cogvideox-lora")
        pipe.set_adapters(["cogvideox-lora"], [lora_scaling])

        # Run inference
        validation_outputs = []
        if args.validation_prompt and args.num_validation_videos > 0:
            validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
            for validation_prompt in validation_prompts:
                pipeline_args = {
                    "prompt": validation_prompt,
                    "guidance_scale": args.guidance_scale,
                    "use_dynamic_cfg": args.use_dynamic_cfg,
                    "height": args.height,
                    "width": args.width,
                }

                video = log_validation(
                    pipe=pipe,
                    args=args,
                    accelerator=accelerator,
                    pipeline_args=pipeline_args,
                    epoch=epoch,
                    is_final_validation=True,
                )
                validation_outputs.extend(video)

        if args.push_to_hub:
            save_model_card(
                repo_id,
                videos=validation_outputs,
                base_model=args.pretrained_model_name_or_path,
                validation_prompt=args.validation_prompt,
                repo_folder=args.output_dir,
                fps=args.fps,
            )
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    args = get_args()
    main(args)