Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,846 Bytes
bb63937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import argparse
from contextlib import nullcontext
import torch
from accelerate import init_empty_weights
from safetensors.torch import load_file
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import AutoencoderKLMochi, FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel
from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
TOKENIZER_MAX_LENGTH = 256
parser = argparse.ArgumentParser()
parser.add_argument("--transformer_checkpoint_path", default=None, type=str)
parser.add_argument("--vae_encoder_checkpoint_path", default=None, type=str)
parser.add_argument("--vae_decoder_checkpoint_path", default=None, type=str)
parser.add_argument("--output_path", required=True, type=str)
parser.add_argument("--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving")
parser.add_argument("--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory")
parser.add_argument("--dtype", type=str, default=None)
args = parser.parse_args()
# This is specific to `AdaLayerNormContinuous`:
# Diffusers implementation split the linear projection into the scale, shift while Mochi split it into shift, scale
def swap_scale_shift(weight, dim):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
def swap_proj_gate(weight):
proj, gate = weight.chunk(2, dim=0)
new_weight = torch.cat([gate, proj], dim=0)
return new_weight
def convert_mochi_transformer_checkpoint_to_diffusers(ckpt_path):
original_state_dict = load_file(ckpt_path, device="cpu")
new_state_dict = {}
# Convert patch_embed
new_state_dict["patch_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight")
new_state_dict["patch_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias")
# Convert time_embed
new_state_dict["time_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop("t_embedder.mlp.0.weight")
new_state_dict["time_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop("t_embedder.mlp.0.bias")
new_state_dict["time_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop("t_embedder.mlp.2.weight")
new_state_dict["time_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop("t_embedder.mlp.2.bias")
new_state_dict["time_embed.pooler.to_kv.weight"] = original_state_dict.pop("t5_y_embedder.to_kv.weight")
new_state_dict["time_embed.pooler.to_kv.bias"] = original_state_dict.pop("t5_y_embedder.to_kv.bias")
new_state_dict["time_embed.pooler.to_q.weight"] = original_state_dict.pop("t5_y_embedder.to_q.weight")
new_state_dict["time_embed.pooler.to_q.bias"] = original_state_dict.pop("t5_y_embedder.to_q.bias")
new_state_dict["time_embed.pooler.to_out.weight"] = original_state_dict.pop("t5_y_embedder.to_out.weight")
new_state_dict["time_embed.pooler.to_out.bias"] = original_state_dict.pop("t5_y_embedder.to_out.bias")
new_state_dict["time_embed.caption_proj.weight"] = original_state_dict.pop("t5_yproj.weight")
new_state_dict["time_embed.caption_proj.bias"] = original_state_dict.pop("t5_yproj.bias")
# Convert transformer blocks
num_layers = 48
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
old_prefix = f"blocks.{i}."
# norm1
new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(old_prefix + "mod_x.weight")
new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(old_prefix + "mod_x.bias")
if i < num_layers - 1:
new_state_dict[block_prefix + "norm1_context.linear.weight"] = original_state_dict.pop(
old_prefix + "mod_y.weight"
)
new_state_dict[block_prefix + "norm1_context.linear.bias"] = original_state_dict.pop(
old_prefix + "mod_y.bias"
)
else:
new_state_dict[block_prefix + "norm1_context.linear_1.weight"] = original_state_dict.pop(
old_prefix + "mod_y.weight"
)
new_state_dict[block_prefix + "norm1_context.linear_1.bias"] = original_state_dict.pop(
old_prefix + "mod_y.bias"
)
# Visual attention
qkv_weight = original_state_dict.pop(old_prefix + "attn.qkv_x.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[block_prefix + "attn1.to_q.weight"] = q
new_state_dict[block_prefix + "attn1.to_k.weight"] = k
new_state_dict[block_prefix + "attn1.to_v.weight"] = v
new_state_dict[block_prefix + "attn1.norm_q.weight"] = original_state_dict.pop(
old_prefix + "attn.q_norm_x.weight"
)
new_state_dict[block_prefix + "attn1.norm_k.weight"] = original_state_dict.pop(
old_prefix + "attn.k_norm_x.weight"
)
new_state_dict[block_prefix + "attn1.to_out.0.weight"] = original_state_dict.pop(
old_prefix + "attn.proj_x.weight"
)
new_state_dict[block_prefix + "attn1.to_out.0.bias"] = original_state_dict.pop(old_prefix + "attn.proj_x.bias")
# Context attention
qkv_weight = original_state_dict.pop(old_prefix + "attn.qkv_y.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[block_prefix + "attn1.add_q_proj.weight"] = q
new_state_dict[block_prefix + "attn1.add_k_proj.weight"] = k
new_state_dict[block_prefix + "attn1.add_v_proj.weight"] = v
new_state_dict[block_prefix + "attn1.norm_added_q.weight"] = original_state_dict.pop(
old_prefix + "attn.q_norm_y.weight"
)
new_state_dict[block_prefix + "attn1.norm_added_k.weight"] = original_state_dict.pop(
old_prefix + "attn.k_norm_y.weight"
)
if i < num_layers - 1:
new_state_dict[block_prefix + "attn1.to_add_out.weight"] = original_state_dict.pop(
old_prefix + "attn.proj_y.weight"
)
new_state_dict[block_prefix + "attn1.to_add_out.bias"] = original_state_dict.pop(
old_prefix + "attn.proj_y.bias"
)
# MLP
new_state_dict[block_prefix + "ff.net.0.proj.weight"] = swap_proj_gate(
original_state_dict.pop(old_prefix + "mlp_x.w1.weight")
)
new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop(old_prefix + "mlp_x.w2.weight")
if i < num_layers - 1:
new_state_dict[block_prefix + "ff_context.net.0.proj.weight"] = swap_proj_gate(
original_state_dict.pop(old_prefix + "mlp_y.w1.weight")
)
new_state_dict[block_prefix + "ff_context.net.2.weight"] = original_state_dict.pop(
old_prefix + "mlp_y.w2.weight"
)
# Output layers
new_state_dict["norm_out.linear.weight"] = swap_scale_shift(
original_state_dict.pop("final_layer.mod.weight"), dim=0
)
new_state_dict["norm_out.linear.bias"] = swap_scale_shift(original_state_dict.pop("final_layer.mod.bias"), dim=0)
new_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
new_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
new_state_dict["pos_frequencies"] = original_state_dict.pop("pos_frequencies")
print("Remaining Keys:", original_state_dict.keys())
return new_state_dict
def convert_mochi_vae_state_dict_to_diffusers(encoder_ckpt_path, decoder_ckpt_path):
encoder_state_dict = load_file(encoder_ckpt_path, device="cpu")
decoder_state_dict = load_file(decoder_ckpt_path, device="cpu")
new_state_dict = {}
# ==== Decoder =====
prefix = "decoder."
# Convert conv_in
new_state_dict[f"{prefix}conv_in.weight"] = decoder_state_dict.pop("blocks.0.0.weight")
new_state_dict[f"{prefix}conv_in.bias"] = decoder_state_dict.pop("blocks.0.0.bias")
# Convert block_in (MochiMidBlock3D)
for i in range(3): # layers_per_block[-1] = 3
new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.0.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.0.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.2.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.2.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.3.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.3.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.5.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.5.bias"
)
# Convert up_blocks (MochiUpBlock3D)
down_block_layers = [6, 4, 3] # layers_per_block[-2], layers_per_block[-3], layers_per_block[-4]
for block in range(3):
for i in range(down_block_layers[block]):
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.0.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.0.bias"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.2.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.2.bias"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.3.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.3.bias"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.5.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.5.bias"
)
new_state_dict[f"{prefix}up_blocks.{block}.proj.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.proj.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.proj.bias"] = decoder_state_dict.pop(f"blocks.{block+1}.proj.bias")
# Convert block_out (MochiMidBlock3D)
for i in range(3): # layers_per_block[0] = 3
new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.0.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.0.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.2.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.2.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.3.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.3.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.5.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.5.bias"
)
# Convert proj_out (Conv1x1 ~= nn.Linear)
new_state_dict[f"{prefix}proj_out.weight"] = decoder_state_dict.pop("output_proj.weight")
new_state_dict[f"{prefix}proj_out.bias"] = decoder_state_dict.pop("output_proj.bias")
print("Remaining Decoder Keys:", decoder_state_dict.keys())
# ==== Encoder =====
prefix = "encoder."
new_state_dict[f"{prefix}proj_in.weight"] = encoder_state_dict.pop("layers.0.weight")
new_state_dict[f"{prefix}proj_in.bias"] = encoder_state_dict.pop("layers.0.bias")
# Convert block_in (MochiMidBlock3D)
for i in range(3): # layers_per_block[0] = 3
new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.0.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.0.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.2.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.2.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.3.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.3.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.5.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.5.bias"
)
# Convert down_blocks (MochiDownBlock3D)
down_block_layers = [3, 4, 6] # layers_per_block[1], layers_per_block[2], layers_per_block[3]
for block in range(3):
new_state_dict[f"{prefix}down_blocks.{block}.conv_in.conv.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.0.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.conv_in.conv.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.0.bias"
)
for i in range(down_block_layers[block]):
# Convert resnets
new_state_dict[
f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.weight"
] = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.0.weight")
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.0.bias"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.2.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.2.bias"
)
new_state_dict[
f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.weight"
] = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.3.weight")
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.3.bias"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.5.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.5.bias"
)
# Convert attentions
qkv_weight = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.attn_block.attn.qkv.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_q.weight"] = q
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_k.weight"] = k
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_v.weight"] = v
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_out.0.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.attn_block.attn.out.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_out.0.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.attn_block.attn.out.bias"
)
new_state_dict[f"{prefix}down_blocks.{block}.norms.{i}.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.attn_block.norm.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.norms.{i}.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.attn_block.norm.bias"
)
# Convert block_out (MochiMidBlock3D)
for i in range(3): # layers_per_block[-1] = 3
# Convert resnets
new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.0.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.0.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.2.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.2.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.3.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.3.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.5.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.5.bias"
)
# Convert attentions
qkv_weight = encoder_state_dict.pop(f"layers.{i+7}.attn_block.attn.qkv.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[f"{prefix}block_out.attentions.{i}.to_q.weight"] = q
new_state_dict[f"{prefix}block_out.attentions.{i}.to_k.weight"] = k
new_state_dict[f"{prefix}block_out.attentions.{i}.to_v.weight"] = v
new_state_dict[f"{prefix}block_out.attentions.{i}.to_out.0.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.attn_block.attn.out.weight"
)
new_state_dict[f"{prefix}block_out.attentions.{i}.to_out.0.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.attn_block.attn.out.bias"
)
new_state_dict[f"{prefix}block_out.norms.{i}.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.attn_block.norm.weight"
)
new_state_dict[f"{prefix}block_out.norms.{i}.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.attn_block.norm.bias"
)
# Convert output layers
new_state_dict[f"{prefix}norm_out.norm_layer.weight"] = encoder_state_dict.pop("output_norm.weight")
new_state_dict[f"{prefix}norm_out.norm_layer.bias"] = encoder_state_dict.pop("output_norm.bias")
new_state_dict[f"{prefix}proj_out.weight"] = encoder_state_dict.pop("output_proj.weight")
print("Remaining Encoder Keys:", encoder_state_dict.keys())
return new_state_dict
def main(args):
if args.dtype is None:
dtype = None
if args.dtype == "fp16":
dtype = torch.float16
elif args.dtype == "bf16":
dtype = torch.bfloat16
elif args.dtype == "fp32":
dtype = torch.float32
else:
raise ValueError(f"Unsupported dtype: {args.dtype}")
transformer = None
vae = None
if args.transformer_checkpoint_path is not None:
converted_transformer_state_dict = convert_mochi_transformer_checkpoint_to_diffusers(
args.transformer_checkpoint_path
)
transformer = MochiTransformer3DModel()
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
if dtype is not None:
transformer = transformer.to(dtype=dtype)
if args.vae_encoder_checkpoint_path is not None and args.vae_decoder_checkpoint_path is not None:
vae = AutoencoderKLMochi(latent_channels=12, out_channels=3)
converted_vae_state_dict = convert_mochi_vae_state_dict_to_diffusers(
args.vae_encoder_checkpoint_path, args.vae_decoder_checkpoint_path
)
vae.load_state_dict(converted_vae_state_dict, strict=True)
if dtype is not None:
vae = vae.to(dtype=dtype)
text_encoder_id = "google/t5-v1_1-xxl"
tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)
# Apparently, the conversion does not work anymore without this :shrug:
for param in text_encoder.parameters():
param.data = param.data.contiguous()
pipe = MochiPipeline(
scheduler=FlowMatchEulerDiscreteScheduler(invert_sigmas=True),
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
)
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", push_to_hub=args.push_to_hub)
if __name__ == "__main__":
main(args)
|