Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,248 Bytes
bb63937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import argparse
from contextlib import nullcontext
import safetensors.torch
import torch
from accelerate import init_empty_weights
from diffusers import AutoencoderKL, SD3Transformer2DModel
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str)
parser.add_argument("--output_path", type=str)
parser.add_argument("--dtype", type=str)
args = parser.parse_args()
def load_original_checkpoint(ckpt_path):
original_state_dict = safetensors.torch.load_file(ckpt_path)
keys = list(original_state_dict.keys())
for k in keys:
if "model.diffusion_model." in k:
original_state_dict[k.replace("model.diffusion_model.", "")] = original_state_dict.pop(k)
return original_state_dict
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight, dim):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
def convert_sd3_transformer_checkpoint_to_diffusers(
original_state_dict, num_layers, caption_projection_dim, dual_attention_layers, has_qk_norm
):
converted_state_dict = {}
# Positional and patch embeddings.
converted_state_dict["pos_embed.pos_embed"] = original_state_dict.pop("pos_embed")
converted_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight")
converted_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias")
# Timestep embeddings.
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
"t_embedder.mlp.0.weight"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
"t_embedder.mlp.0.bias"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
"t_embedder.mlp.2.weight"
)
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
"t_embedder.mlp.2.bias"
)
# Context projections.
converted_state_dict["context_embedder.weight"] = original_state_dict.pop("context_embedder.weight")
converted_state_dict["context_embedder.bias"] = original_state_dict.pop("context_embedder.bias")
# Pooled context projection.
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
"y_embedder.mlp.0.weight"
)
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
"y_embedder.mlp.0.bias"
)
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
"y_embedder.mlp.2.weight"
)
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
"y_embedder.mlp.2.bias"
)
# Transformer blocks 🎸.
for i in range(num_layers):
# Q, K, V
sample_q, sample_k, sample_v = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0
)
context_q, context_k, context_v = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0
)
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0
)
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0
)
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q])
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k])
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v])
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q])
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k])
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias])
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v])
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias])
# qk norm
if has_qk_norm:
converted_state_dict[f"transformer_blocks.{i}.attn.norm_q.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn.ln_q.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn.norm_k.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn.ln_k.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_q.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.attn.ln_q.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_k.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.attn.ln_k.weight"
)
# output projections.
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn.proj.bias"
)
if not (i == num_layers - 1):
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.attn.proj.bias"
)
# attn2
if i in dual_attention_layers:
# Q, K, V
sample_q2, sample_k2, sample_v2 = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn2.qkv.weight"), 3, dim=0
)
sample_q2_bias, sample_k2_bias, sample_v2_bias = torch.chunk(
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn2.qkv.bias"), 3, dim=0
)
converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.weight"] = torch.cat([sample_q2])
converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.bias"] = torch.cat([sample_q2_bias])
converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.weight"] = torch.cat([sample_k2])
converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.bias"] = torch.cat([sample_k2_bias])
converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.weight"] = torch.cat([sample_v2])
converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.bias"] = torch.cat([sample_v2_bias])
# qk norm
if has_qk_norm:
converted_state_dict[f"transformer_blocks.{i}.attn2.norm_q.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn2.ln_q.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn2.norm_k.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn2.ln_k.weight"
)
# output projections.
converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn2.proj.weight"
)
converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.attn2.proj.bias"
)
# norms.
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight"
)
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias"
)
if not (i == num_layers - 1):
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"
)
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"
)
else:
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift(
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"),
dim=caption_projection_dim,
)
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift(
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"),
dim=caption_projection_dim,
)
# ffs.
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.mlp.fc1.weight"
)
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.mlp.fc1.bias"
)
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.mlp.fc2.weight"
)
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.x_block.mlp.fc2.bias"
)
if not (i == num_layers - 1):
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.mlp.fc1.weight"
)
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.mlp.fc1.bias"
)
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.mlp.fc2.weight"
)
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = original_state_dict.pop(
f"joint_blocks.{i}.context_block.mlp.fc2.bias"
)
# Final blocks.
converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
original_state_dict.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim
)
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
original_state_dict.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim
)
return converted_state_dict
def is_vae_in_checkpoint(original_state_dict):
return ("first_stage_model.decoder.conv_in.weight" in original_state_dict) and (
"first_stage_model.encoder.conv_in.weight" in original_state_dict
)
def get_attn2_layers(state_dict):
attn2_layers = []
for key in state_dict.keys():
if "attn2." in key:
# Extract the layer number from the key
layer_num = int(key.split(".")[1])
attn2_layers.append(layer_num)
return tuple(sorted(set(attn2_layers)))
def get_pos_embed_max_size(state_dict):
num_patches = state_dict["pos_embed"].shape[1]
pos_embed_max_size = int(num_patches**0.5)
return pos_embed_max_size
def get_caption_projection_dim(state_dict):
caption_projection_dim = state_dict["context_embedder.weight"].shape[0]
return caption_projection_dim
def main(args):
original_ckpt = load_original_checkpoint(args.checkpoint_path)
original_dtype = next(iter(original_ckpt.values())).dtype
# Initialize dtype with a default value
dtype = None
if args.dtype is None:
dtype = original_dtype
elif args.dtype == "fp16":
dtype = torch.float16
elif args.dtype == "bf16":
dtype = torch.bfloat16
elif args.dtype == "fp32":
dtype = torch.float32
else:
raise ValueError(f"Unsupported dtype: {args.dtype}")
if dtype != original_dtype:
print(
f"Checkpoint dtype {original_dtype} does not match requested dtype {dtype}. This can lead to unexpected results, proceed with caution."
)
num_layers = list(set(int(k.split(".", 2)[1]) for k in original_ckpt if "joint_blocks" in k))[-1] + 1 # noqa: C401
caption_projection_dim = get_caption_projection_dim(original_ckpt)
# () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
attn2_layers = get_attn2_layers(original_ckpt)
# sd3.5 use qk norm("rms_norm")
has_qk_norm = any("ln_q" in key for key in original_ckpt.keys())
# sd3.5 2b use pox_embed_max_size=384 and sd3.0 and sd3.5 8b use 192
pos_embed_max_size = get_pos_embed_max_size(original_ckpt)
converted_transformer_state_dict = convert_sd3_transformer_checkpoint_to_diffusers(
original_ckpt, num_layers, caption_projection_dim, attn2_layers, has_qk_norm
)
with CTX():
transformer = SD3Transformer2DModel(
sample_size=128,
patch_size=2,
in_channels=16,
joint_attention_dim=4096,
num_layers=num_layers,
caption_projection_dim=caption_projection_dim,
num_attention_heads=num_layers,
pos_embed_max_size=pos_embed_max_size,
qk_norm="rms_norm" if has_qk_norm else None,
dual_attention_layers=attn2_layers,
)
if is_accelerate_available():
load_model_dict_into_meta(transformer, converted_transformer_state_dict)
else:
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
print("Saving SD3 Transformer in Diffusers format.")
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")
if is_vae_in_checkpoint(original_ckpt):
with CTX():
vae = AutoencoderKL.from_config(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="vae",
latent_channels=16,
use_post_quant_conv=False,
use_quant_conv=False,
scaling_factor=1.5305,
shift_factor=0.0609,
)
converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config)
if is_accelerate_available():
load_model_dict_into_meta(vae, converted_vae_state_dict)
else:
vae.load_state_dict(converted_vae_state_dict, strict=True)
print("Saving SD3 Autoencoder in Diffusers format.")
vae.to(dtype).save_pretrained(f"{args.output_path}/vae")
if __name__ == "__main__":
main(args)
|