File size: 6,793 Bytes
bb63937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKLCogVideoX,
    CogVideoXDDIMScheduler,
    CogVideoXDPMScheduler,
    CogVideoXPipeline,
    CogVideoXTransformer3DModel,
)
from diffusers.utils.testing_utils import (
    floats_tensor,
    is_peft_available,
    require_peft_backend,
    skip_mps,
    torch_device,
)


if is_peft_available():
    pass

sys.path.append(".")

from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set  # noqa: E402


@require_peft_backend
class CogVideoXLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
    pipeline_class = CogVideoXPipeline
    scheduler_cls = CogVideoXDPMScheduler
    scheduler_kwargs = {"timestep_spacing": "trailing"}
    scheduler_classes = [CogVideoXDDIMScheduler, CogVideoXDPMScheduler]

    transformer_kwargs = {
        "num_attention_heads": 4,
        "attention_head_dim": 8,
        "in_channels": 4,
        "out_channels": 4,
        "time_embed_dim": 2,
        "text_embed_dim": 32,
        "num_layers": 1,
        "sample_width": 16,
        "sample_height": 16,
        "sample_frames": 9,
        "patch_size": 2,
        "temporal_compression_ratio": 4,
        "max_text_seq_length": 16,
    }
    transformer_cls = CogVideoXTransformer3DModel
    vae_kwargs = {
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": (
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
        ),
        "up_block_types": (
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
        ),
        "block_out_channels": (8, 8, 8, 8),
        "latent_channels": 4,
        "layers_per_block": 1,
        "norm_num_groups": 2,
        "temporal_compression_ratio": 4,
    }
    vae_cls = AutoencoderKLCogVideoX
    tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
    text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"

    text_encoder_target_modules = ["q", "k", "v", "o"]

    @property
    def output_shape(self):
        return (1, 9, 16, 16, 3)

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 16
        num_channels = 4
        num_frames = 9
        num_latent_frames = 3  # (num_frames - 1) // temporal_compression_ratio + 1
        sizes = (2, 2)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "dance monkey",
            "num_frames": num_frames,
            "num_inference_steps": 4,
            "guidance_scale": 6.0,
            # Cannot reduce because convolution kernel becomes bigger than sample
            "height": 16,
            "width": 16,
            "max_sequence_length": sequence_length,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    @skip_mps
    def test_lora_fuse_nan(self):
        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")

            self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
                pipe.transformer.transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf")

            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
                pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)

            # without we should not see an error, but every image will be black
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)

            out = pipe(
                "test", num_inference_steps=2, max_sequence_length=inputs["max_sequence_length"], output_type="np"
            )[0]

            self.assertTrue(np.isnan(out).all())

    def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
        super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)

    def test_simple_inference_with_text_denoiser_lora_unfused(self):
        super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)

    @unittest.skip("Not supported in CogVideoX.")
    def test_simple_inference_with_text_denoiser_block_scale(self):
        pass

    @unittest.skip("Not supported in CogVideoX.")
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
        pass

    @unittest.skip("Not supported in CogVideoX.")
    def test_modify_padding_mode(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
    def test_simple_inference_with_partial_text_lora(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
    def test_simple_inference_with_text_lora(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
    def test_simple_inference_with_text_lora_and_scale(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
    def test_simple_inference_with_text_lora_fused(self):
        pass

    @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
    def test_simple_inference_with_text_lora_save_load(self):
        pass