Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import numpy.core.multiarray as multiarray | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
from torch.serialization import add_safe_globals | |
from diffusers import DDPMScheduler, UNet1DModel | |
add_safe_globals( | |
[ | |
multiarray._reconstruct, | |
np.ndarray, | |
np.dtype, | |
np.dtype(np.float32).type, | |
np.dtype(np.float64).type, | |
np.dtype(np.int32).type, | |
np.dtype(np.int64).type, | |
type(np.dtype(np.float32)), | |
type(np.dtype(np.float64)), | |
type(np.dtype(np.int32)), | |
type(np.dtype(np.int64)), | |
] | |
) | |
""" | |
An example of using HuggingFace's diffusers library for diffusion policy, | |
generating smooth movement trajectories. | |
This implements a robot control model for pushing a T-shaped block into a target area. | |
The model takes in the robot arm position, block position, and block angle, | |
then outputs a sequence of 16 (x,y) positions for the robot arm to follow. | |
""" | |
class ObservationEncoder(nn.Module): | |
""" | |
Converts raw robot observations (positions/angles) into a more compact representation | |
state_dim (int): Dimension of the input state vector (default: 5) | |
[robot_x, robot_y, block_x, block_y, block_angle] | |
- Input shape: (batch_size, state_dim) | |
- Output shape: (batch_size, 256) | |
""" | |
def __init__(self, state_dim): | |
super().__init__() | |
self.net = nn.Sequential(nn.Linear(state_dim, 512), nn.ReLU(), nn.Linear(512, 256)) | |
def forward(self, x): | |
return self.net(x) | |
class ObservationProjection(nn.Module): | |
""" | |
Takes the encoded observation and transforms it into 32 values that represent the current robot/block situation. | |
These values are used as additional contextual information during the diffusion model's trajectory generation. | |
- Input: 256-dim vector (padded to 512) | |
Shape: (batch_size, 256) | |
- Output: 32 contextual information values for the diffusion model | |
Shape: (batch_size, 32) | |
""" | |
def __init__(self): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(32, 512)) | |
self.bias = nn.Parameter(torch.zeros(32)) | |
def forward(self, x): # pad 256-dim input to 512-dim with zeros | |
if x.size(-1) == 256: | |
x = torch.cat([x, torch.zeros(*x.shape[:-1], 256, device=x.device)], dim=-1) | |
return nn.functional.linear(x, self.weight, self.bias) | |
class DiffusionPolicy: | |
""" | |
Implements diffusion policy for generating robot arm trajectories. | |
Uses diffusion to generate sequences of positions for a robot arm, conditioned on | |
the current state of the robot and the block it needs to push. | |
The model expects observations in pixel coordinates (0-512 range) and block angle in radians. | |
It generates trajectories as sequences of (x,y) coordinates also in the 0-512 range. | |
""" | |
def __init__(self, state_dim=5, device="cpu"): | |
self.device = device | |
# define valid ranges for inputs/outputs | |
self.stats = { | |
"obs": {"min": torch.zeros(5), "max": torch.tensor([512, 512, 512, 512, 2 * np.pi])}, | |
"action": {"min": torch.zeros(2), "max": torch.full((2,), 512)}, | |
} | |
self.obs_encoder = ObservationEncoder(state_dim).to(device) | |
self.obs_projection = ObservationProjection().to(device) | |
# UNet model that performs the denoising process | |
# takes in concatenated action (2 channels) and context (32 channels) = 34 channels | |
# outputs predicted action (2 channels for x,y coordinates) | |
self.model = UNet1DModel( | |
sample_size=16, # length of trajectory sequence | |
in_channels=34, | |
out_channels=2, | |
layers_per_block=2, # number of layers per each UNet block | |
block_out_channels=(128,), # number of output neurons per layer in each block | |
down_block_types=("DownBlock1D",), # reduce the resolution of data | |
up_block_types=("UpBlock1D",), # increase the resolution of data | |
).to(device) | |
# noise scheduler that controls the denoising process | |
self.noise_scheduler = DDPMScheduler( | |
num_train_timesteps=100, # number of denoising steps | |
beta_schedule="squaredcos_cap_v2", # type of noise schedule | |
) | |
# load pre-trained weights from HuggingFace | |
checkpoint = torch.load( | |
hf_hub_download("dorsar/diffusion_policy", "push_tblock.pt"), weights_only=True, map_location=device | |
) | |
self.model.load_state_dict(checkpoint["model_state_dict"]) | |
self.obs_encoder.load_state_dict(checkpoint["encoder_state_dict"]) | |
self.obs_projection.load_state_dict(checkpoint["projection_state_dict"]) | |
# scales data to [-1, 1] range for neural network processing | |
def normalize_data(self, data, stats): | |
return ((data - stats["min"]) / (stats["max"] - stats["min"])) * 2 - 1 | |
# converts normalized data back to original range | |
def unnormalize_data(self, ndata, stats): | |
return ((ndata + 1) / 2) * (stats["max"] - stats["min"]) + stats["min"] | |
def predict(self, observation): | |
""" | |
Generates a trajectory of robot arm positions given the current state. | |
Args: | |
observation (torch.Tensor): Current state [robot_x, robot_y, block_x, block_y, block_angle] | |
Shape: (batch_size, 5) | |
Returns: | |
torch.Tensor: Sequence of (x,y) positions for the robot arm to follow | |
Shape: (batch_size, 16, 2) where: | |
- 16 is the number of steps in the trajectory | |
- 2 is the (x,y) coordinates in pixel space (0-512) | |
The function first encodes the observation, then uses it to condition a diffusion | |
process that gradually denoises random trajectories into smooth, purposeful movements. | |
""" | |
observation = observation.to(self.device) | |
normalized_obs = self.normalize_data(observation, self.stats["obs"]) | |
# encode the observation into context values for the diffusion model | |
cond = self.obs_projection(self.obs_encoder(normalized_obs)) | |
# keeps first & second dimension sizes unchanged, and multiplies last dimension by 16 | |
cond = cond.view(normalized_obs.shape[0], -1, 1).expand(-1, -1, 16) | |
# initialize action with noise - random noise that will be refined into a trajectory | |
action = torch.randn((observation.shape[0], 2, 16), device=self.device) | |
# denoise | |
# at each step `t`, the current noisy trajectory (`action`) & conditioning info (context) are | |
# fed into the model to predict a denoised trajectory, then uses self.noise_scheduler.step to | |
# apply this prediction & slightly reduce the noise in `action` more | |
self.noise_scheduler.set_timesteps(100) | |
for t in self.noise_scheduler.timesteps: | |
model_output = self.model(torch.cat([action, cond], dim=1), t) | |
action = self.noise_scheduler.step(model_output.sample, t, action).prev_sample | |
action = action.transpose(1, 2) # reshape to [batch, 16, 2] | |
action = self.unnormalize_data(action, self.stats["action"]) # scale back to coordinates | |
return action | |
if __name__ == "__main__": | |
policy = DiffusionPolicy() | |
# sample of a single observation | |
# robot arm starts in center, block is slightly left and up, rotated 90 degrees | |
obs = torch.tensor( | |
[ | |
[ | |
256.0, # robot arm x position (middle of screen) | |
256.0, # robot arm y position (middle of screen) | |
200.0, # block x position | |
300.0, # block y position | |
np.pi / 2, # block angle (90 degrees) | |
] | |
] | |
) | |
action = policy.predict(obs) | |
print("Action shape:", action.shape) # should be [1, 16, 2] - one trajectory of 16 x,y positions | |
print("\nPredicted trajectory:") | |
for i, (x, y) in enumerate(action[0]): | |
print(f"Step {i:2d}: x={x:6.1f}, y={y:6.1f}") | |