ι™ˆη‘•
Add diffusers code
bb63937
raw
history blame
8.14 kB
import numpy as np
import numpy.core.multiarray as multiarray
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch.serialization import add_safe_globals
from diffusers import DDPMScheduler, UNet1DModel
add_safe_globals(
[
multiarray._reconstruct,
np.ndarray,
np.dtype,
np.dtype(np.float32).type,
np.dtype(np.float64).type,
np.dtype(np.int32).type,
np.dtype(np.int64).type,
type(np.dtype(np.float32)),
type(np.dtype(np.float64)),
type(np.dtype(np.int32)),
type(np.dtype(np.int64)),
]
)
"""
An example of using HuggingFace's diffusers library for diffusion policy,
generating smooth movement trajectories.
This implements a robot control model for pushing a T-shaped block into a target area.
The model takes in the robot arm position, block position, and block angle,
then outputs a sequence of 16 (x,y) positions for the robot arm to follow.
"""
class ObservationEncoder(nn.Module):
"""
Converts raw robot observations (positions/angles) into a more compact representation
state_dim (int): Dimension of the input state vector (default: 5)
[robot_x, robot_y, block_x, block_y, block_angle]
- Input shape: (batch_size, state_dim)
- Output shape: (batch_size, 256)
"""
def __init__(self, state_dim):
super().__init__()
self.net = nn.Sequential(nn.Linear(state_dim, 512), nn.ReLU(), nn.Linear(512, 256))
def forward(self, x):
return self.net(x)
class ObservationProjection(nn.Module):
"""
Takes the encoded observation and transforms it into 32 values that represent the current robot/block situation.
These values are used as additional contextual information during the diffusion model's trajectory generation.
- Input: 256-dim vector (padded to 512)
Shape: (batch_size, 256)
- Output: 32 contextual information values for the diffusion model
Shape: (batch_size, 32)
"""
def __init__(self):
super().__init__()
self.weight = nn.Parameter(torch.randn(32, 512))
self.bias = nn.Parameter(torch.zeros(32))
def forward(self, x): # pad 256-dim input to 512-dim with zeros
if x.size(-1) == 256:
x = torch.cat([x, torch.zeros(*x.shape[:-1], 256, device=x.device)], dim=-1)
return nn.functional.linear(x, self.weight, self.bias)
class DiffusionPolicy:
"""
Implements diffusion policy for generating robot arm trajectories.
Uses diffusion to generate sequences of positions for a robot arm, conditioned on
the current state of the robot and the block it needs to push.
The model expects observations in pixel coordinates (0-512 range) and block angle in radians.
It generates trajectories as sequences of (x,y) coordinates also in the 0-512 range.
"""
def __init__(self, state_dim=5, device="cpu"):
self.device = device
# define valid ranges for inputs/outputs
self.stats = {
"obs": {"min": torch.zeros(5), "max": torch.tensor([512, 512, 512, 512, 2 * np.pi])},
"action": {"min": torch.zeros(2), "max": torch.full((2,), 512)},
}
self.obs_encoder = ObservationEncoder(state_dim).to(device)
self.obs_projection = ObservationProjection().to(device)
# UNet model that performs the denoising process
# takes in concatenated action (2 channels) and context (32 channels) = 34 channels
# outputs predicted action (2 channels for x,y coordinates)
self.model = UNet1DModel(
sample_size=16, # length of trajectory sequence
in_channels=34,
out_channels=2,
layers_per_block=2, # number of layers per each UNet block
block_out_channels=(128,), # number of output neurons per layer in each block
down_block_types=("DownBlock1D",), # reduce the resolution of data
up_block_types=("UpBlock1D",), # increase the resolution of data
).to(device)
# noise scheduler that controls the denoising process
self.noise_scheduler = DDPMScheduler(
num_train_timesteps=100, # number of denoising steps
beta_schedule="squaredcos_cap_v2", # type of noise schedule
)
# load pre-trained weights from HuggingFace
checkpoint = torch.load(
hf_hub_download("dorsar/diffusion_policy", "push_tblock.pt"), weights_only=True, map_location=device
)
self.model.load_state_dict(checkpoint["model_state_dict"])
self.obs_encoder.load_state_dict(checkpoint["encoder_state_dict"])
self.obs_projection.load_state_dict(checkpoint["projection_state_dict"])
# scales data to [-1, 1] range for neural network processing
def normalize_data(self, data, stats):
return ((data - stats["min"]) / (stats["max"] - stats["min"])) * 2 - 1
# converts normalized data back to original range
def unnormalize_data(self, ndata, stats):
return ((ndata + 1) / 2) * (stats["max"] - stats["min"]) + stats["min"]
@torch.no_grad()
def predict(self, observation):
"""
Generates a trajectory of robot arm positions given the current state.
Args:
observation (torch.Tensor): Current state [robot_x, robot_y, block_x, block_y, block_angle]
Shape: (batch_size, 5)
Returns:
torch.Tensor: Sequence of (x,y) positions for the robot arm to follow
Shape: (batch_size, 16, 2) where:
- 16 is the number of steps in the trajectory
- 2 is the (x,y) coordinates in pixel space (0-512)
The function first encodes the observation, then uses it to condition a diffusion
process that gradually denoises random trajectories into smooth, purposeful movements.
"""
observation = observation.to(self.device)
normalized_obs = self.normalize_data(observation, self.stats["obs"])
# encode the observation into context values for the diffusion model
cond = self.obs_projection(self.obs_encoder(normalized_obs))
# keeps first & second dimension sizes unchanged, and multiplies last dimension by 16
cond = cond.view(normalized_obs.shape[0], -1, 1).expand(-1, -1, 16)
# initialize action with noise - random noise that will be refined into a trajectory
action = torch.randn((observation.shape[0], 2, 16), device=self.device)
# denoise
# at each step `t`, the current noisy trajectory (`action`) & conditioning info (context) are
# fed into the model to predict a denoised trajectory, then uses self.noise_scheduler.step to
# apply this prediction & slightly reduce the noise in `action` more
self.noise_scheduler.set_timesteps(100)
for t in self.noise_scheduler.timesteps:
model_output = self.model(torch.cat([action, cond], dim=1), t)
action = self.noise_scheduler.step(model_output.sample, t, action).prev_sample
action = action.transpose(1, 2) # reshape to [batch, 16, 2]
action = self.unnormalize_data(action, self.stats["action"]) # scale back to coordinates
return action
if __name__ == "__main__":
policy = DiffusionPolicy()
# sample of a single observation
# robot arm starts in center, block is slightly left and up, rotated 90 degrees
obs = torch.tensor(
[
[
256.0, # robot arm x position (middle of screen)
256.0, # robot arm y position (middle of screen)
200.0, # block x position
300.0, # block y position
np.pi / 2, # block angle (90 degrees)
]
]
)
action = policy.predict(obs)
print("Action shape:", action.shape) # should be [1, 16, 2] - one trajectory of 16 x,y positions
print("\nPredicted trajectory:")
for i, (x, y) in enumerate(action[0]):
print(f"Step {i:2d}: x={x:6.1f}, y={y:6.1f}")