Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import os | |
import shutil | |
import sys | |
import tempfile | |
from diffusers import DiffusionPipeline, UNet2DConditionModel # noqa: E402 | |
sys.path.append("..") | |
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class TextToImage(ExamplesTestsAccelerate): | |
def test_text_to_image(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
def test_text_to_image_checkpointing(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 4, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 4 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=1) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
# check can run an intermediate checkpoint | |
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
pipe(prompt, num_inference_steps=1) | |
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
# Run training script for 2 total steps resuming from checkpoint 4 | |
resume_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=1 | |
--resume_from_checkpoint=checkpoint-4 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check can run new fully trained pipeline | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=1) | |
# no checkpoint-2 -> check old checkpoints do not exist | |
# check new checkpoints exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-5"}, | |
) | |
def test_text_to_image_checkpointing_use_ema(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 4, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 4 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--use_ema | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=2) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
# check can run an intermediate checkpoint | |
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
pipe(prompt, num_inference_steps=1) | |
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
# Run training script for 2 total steps resuming from checkpoint 4 | |
resume_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=1 | |
--resume_from_checkpoint=checkpoint-4 | |
--use_ema | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check can run new fully trained pipeline | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=1) | |
# no checkpoint-2 -> check old checkpoints do not exist | |
# check new checkpoints exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-5"}, | |
) | |
def test_text_to_image_checkpointing_checkpoints_total_limit(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 | |
# Should create checkpoints at steps 2, 4, 6 | |
# with checkpoint at step 2 deleted | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 6 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=1) | |
# check checkpoint directories exist | |
# checkpoint-2 should have been deleted | |
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) | |
def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
prompt = "a prompt" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Run training script with checkpointing | |
# max_train_steps == 4, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 4 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=1) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
# resume and we should try to checkpoint at 6, where we'll have to remove | |
# checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint | |
resume_run_args = f""" | |
examples/text_to_image/train_text_to_image.py | |
--pretrained_model_name_or_path {pretrained_model_name_or_path} | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 8 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-4 | |
--checkpoints_total_limit=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
pipe(prompt, num_inference_steps=1) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-6", "checkpoint-8"}, | |
) | |
class TextToImageSDXL(ExamplesTestsAccelerate): | |
def test_text_to_image_sdxl(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/text_to_image/train_text_to_image_sdxl.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--center_crop | |
--random_flip | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |