Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import sys | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel | |
from diffusers import ( | |
FlowMatchEulerDiscreteScheduler, | |
SD3Transformer2DModel, | |
StableDiffusion3Img2ImgPipeline, | |
StableDiffusion3Pipeline, | |
) | |
from diffusers.utils import load_image | |
from diffusers.utils.import_utils import is_accelerate_available | |
from diffusers.utils.testing_utils import ( | |
is_peft_available, | |
numpy_cosine_similarity_distance, | |
require_peft_backend, | |
require_torch_gpu, | |
torch_device, | |
) | |
if is_peft_available(): | |
pass | |
sys.path.append(".") | |
from utils import PeftLoraLoaderMixinTests # noqa: E402 | |
if is_accelerate_available(): | |
from accelerate.utils import release_memory | |
class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): | |
pipeline_class = StableDiffusion3Pipeline | |
scheduler_cls = FlowMatchEulerDiscreteScheduler | |
scheduler_kwargs = {} | |
scheduler_classes = [FlowMatchEulerDiscreteScheduler] | |
transformer_kwargs = { | |
"sample_size": 32, | |
"patch_size": 1, | |
"in_channels": 4, | |
"num_layers": 1, | |
"attention_head_dim": 8, | |
"num_attention_heads": 4, | |
"caption_projection_dim": 32, | |
"joint_attention_dim": 32, | |
"pooled_projection_dim": 64, | |
"out_channels": 4, | |
} | |
transformer_cls = SD3Transformer2DModel | |
vae_kwargs = { | |
"sample_size": 32, | |
"in_channels": 3, | |
"out_channels": 3, | |
"block_out_channels": (4,), | |
"layers_per_block": 1, | |
"latent_channels": 4, | |
"norm_num_groups": 1, | |
"use_quant_conv": False, | |
"use_post_quant_conv": False, | |
"shift_factor": 0.0609, | |
"scaling_factor": 1.5035, | |
} | |
has_three_text_encoders = True | |
tokenizer_cls, tokenizer_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip" | |
tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip" | |
tokenizer_3_cls, tokenizer_3_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" | |
text_encoder_cls, text_encoder_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder" | |
text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder-2" | |
text_encoder_3_cls, text_encoder_3_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" | |
def output_shape(self): | |
return (1, 32, 32, 3) | |
def test_sd3_lora(self): | |
""" | |
Test loading the loras that are saved with the diffusers and peft formats. | |
Related PR: https://github.com/huggingface/diffusers/pull/8584 | |
""" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components[0]) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
lora_model_id = "hf-internal-testing/tiny-sd3-loras" | |
lora_filename = "lora_diffusers_format.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
pipe.unload_lora_weights() | |
lora_filename = "lora_peft_format.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
def test_simple_inference_with_text_denoiser_block_scale(self): | |
pass | |
def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self): | |
pass | |
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
pass | |
def test_modify_padding_mode(self): | |
pass | |
class LoraSD3IntegrationTests(unittest.TestCase): | |
pipeline_class = StableDiffusion3Img2ImgPipeline | |
repo_id = "stabilityai/stable-diffusion-3-medium-diffusers" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, seed=0): | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
) | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
return { | |
"prompt": "corgi", | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"generator": generator, | |
"image": init_image, | |
} | |
def test_sd3_img2img_lora(self): | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16) | |
pipe.load_lora_weights("zwloong/sd3-lora-training-rank16-v2", weight_name="pytorch_lora_weights.safetensors") | |
pipe.enable_sequential_cpu_offload() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images[0] | |
image_slice = image[0, -3:, -3:] | |
expected_slice = np.array([0.5396, 0.5776, 0.7432, 0.5151, 0.5586, 0.7383, 0.5537, 0.5933, 0.7153]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
assert max_diff < 1e-4, f"Outputs are not close enough, got {max_diff}" | |
pipe.unload_lora_weights() | |
release_memory(pipe) | |