DimensionX / diffusers /tests /lora /test_lora_layers_sd3.py
ι™ˆη‘•
Add diffusers code
bb63937
raw
history blame
6.23 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import sys
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import (
FlowMatchEulerDiscreteScheduler,
SD3Transformer2DModel,
StableDiffusion3Img2ImgPipeline,
StableDiffusion3Pipeline,
)
from diffusers.utils import load_image
from diffusers.utils.import_utils import is_accelerate_available
from diffusers.utils.testing_utils import (
is_peft_available,
numpy_cosine_similarity_distance,
require_peft_backend,
require_torch_gpu,
torch_device,
)
if is_peft_available():
pass
sys.path.append(".")
from utils import PeftLoraLoaderMixinTests # noqa: E402
if is_accelerate_available():
from accelerate.utils import release_memory
@require_peft_backend
class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = StableDiffusion3Pipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_kwargs = {}
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
transformer_kwargs = {
"sample_size": 32,
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,
"joint_attention_dim": 32,
"pooled_projection_dim": 64,
"out_channels": 4,
}
transformer_cls = SD3Transformer2DModel
vae_kwargs = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"block_out_channels": (4,),
"layers_per_block": 1,
"latent_channels": 4,
"norm_num_groups": 1,
"use_quant_conv": False,
"use_post_quant_conv": False,
"shift_factor": 0.0609,
"scaling_factor": 1.5035,
}
has_three_text_encoders = True
tokenizer_cls, tokenizer_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip"
tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip"
tokenizer_3_cls, tokenizer_3_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
text_encoder_cls, text_encoder_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder"
text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder-2"
text_encoder_3_cls, text_encoder_3_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
@property
def output_shape(self):
return (1, 32, 32, 3)
@require_torch_gpu
def test_sd3_lora(self):
"""
Test loading the loras that are saved with the diffusers and peft formats.
Related PR: https://github.com/huggingface/diffusers/pull/8584
"""
components = self.get_dummy_components()
pipe = self.pipeline_class(**components[0])
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
lora_model_id = "hf-internal-testing/tiny-sd3-loras"
lora_filename = "lora_diffusers_format.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.unload_lora_weights()
lora_filename = "lora_peft_format.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
@unittest.skip("Not supported in SD3.")
def test_simple_inference_with_text_denoiser_block_scale(self):
pass
@unittest.skip("Not supported in SD3.")
def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
pass
@unittest.skip("Not supported in SD3.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
@unittest.skip("Not supported in SD3.")
def test_modify_padding_mode(self):
pass
@require_torch_gpu
@require_peft_backend
class LoraSD3IntegrationTests(unittest.TestCase):
pipeline_class = StableDiffusion3Img2ImgPipeline
repo_id = "stabilityai/stable-diffusion-3-medium-diffusers"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, seed=0):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
return {
"prompt": "corgi",
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"generator": generator,
"image": init_image,
}
def test_sd3_img2img_lora(self):
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16)
pipe.load_lora_weights("zwloong/sd3-lora-training-rank16-v2", weight_name="pytorch_lora_weights.safetensors")
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images[0]
image_slice = image[0, -3:, -3:]
expected_slice = np.array([0.5396, 0.5776, 0.7432, 0.5151, 0.5586, 0.7383, 0.5537, 0.5933, 0.7153])
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
assert max_diff < 1e-4, f"Outputs are not close enough, got {max_diff}"
pipe.unload_lora_weights()
release_memory(pipe)