Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import gc | |
import importlib | |
import sys | |
import time | |
import unittest | |
import numpy as np | |
import torch | |
from packaging import version | |
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import ( | |
ControlNetModel, | |
EulerDiscreteScheduler, | |
LCMScheduler, | |
StableDiffusionXLAdapterPipeline, | |
StableDiffusionXLControlNetPipeline, | |
StableDiffusionXLPipeline, | |
T2IAdapter, | |
) | |
from diffusers.utils import logging | |
from diffusers.utils.import_utils import is_accelerate_available | |
from diffusers.utils.testing_utils import ( | |
CaptureLogger, | |
load_image, | |
nightly, | |
numpy_cosine_similarity_distance, | |
require_peft_backend, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
sys.path.append(".") | |
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set, state_dicts_almost_equal # noqa: E402 | |
if is_accelerate_available(): | |
from accelerate.utils import release_memory | |
class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): | |
has_two_text_encoders = True | |
pipeline_class = StableDiffusionXLPipeline | |
scheduler_cls = EulerDiscreteScheduler | |
scheduler_kwargs = { | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"beta_schedule": "scaled_linear", | |
"timestep_spacing": "leading", | |
"steps_offset": 1, | |
} | |
unet_kwargs = { | |
"block_out_channels": (32, 64), | |
"layers_per_block": 2, | |
"sample_size": 32, | |
"in_channels": 4, | |
"out_channels": 4, | |
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), | |
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), | |
"attention_head_dim": (2, 4), | |
"use_linear_projection": True, | |
"addition_embed_type": "text_time", | |
"addition_time_embed_dim": 8, | |
"transformer_layers_per_block": (1, 2), | |
"projection_class_embeddings_input_dim": 80, # 6 * 8 + 32 | |
"cross_attention_dim": 64, | |
} | |
vae_kwargs = { | |
"block_out_channels": [32, 64], | |
"in_channels": 3, | |
"out_channels": 3, | |
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
"latent_channels": 4, | |
"sample_size": 128, | |
} | |
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2" | |
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" | |
text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "peft-internal-testing/tiny-clip-text-2" | |
tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" | |
def output_shape(self): | |
return (1, 64, 64, 3) | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
class LoraSDXLIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_sdxl_1_0_lora(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
pipe.enable_model_cpu_offload() | |
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
images = images[0, -3:, -3:, -1].flatten() | |
expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) | |
max_diff = numpy_cosine_similarity_distance(expected, images) | |
assert max_diff < 1e-4 | |
pipe.unload_lora_weights() | |
release_memory(pipe) | |
def test_sdxl_1_0_blockwise_lora(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
pipe.enable_model_cpu_offload() | |
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, adapter_name="offset") | |
scales = { | |
"unet": { | |
"down": {"block_1": [1.0, 1.0], "block_2": [1.0, 1.0]}, | |
"mid": 1.0, | |
"up": {"block_0": [1.0, 1.0, 1.0], "block_1": [1.0, 1.0, 1.0]}, | |
}, | |
} | |
pipe.set_adapters(["offset"], [scales]) | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
images = images[0, -3:, -3:, -1].flatten() | |
expected = np.array([00.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) | |
max_diff = numpy_cosine_similarity_distance(expected, images) | |
assert max_diff < 1e-4 | |
pipe.unload_lora_weights() | |
release_memory(pipe) | |
def test_sdxl_lcm_lora(self): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
generator = torch.Generator("cpu").manual_seed(0) | |
lora_model_id = "latent-consistency/lcm-lora-sdxl" | |
pipe.load_lora_weights(lora_model_id) | |
image = pipe( | |
"masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 | |
).images[0] | |
expected_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png" | |
) | |
image_np = pipe.image_processor.pil_to_numpy(image) | |
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) | |
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) | |
assert max_diff < 1e-4 | |
pipe.unload_lora_weights() | |
release_memory(pipe) | |
def test_sdxl_1_0_lora_fusion(self): | |
generator = torch.Generator().manual_seed(0) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
pipe.fuse_lora() | |
# We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being | |
# silently deleted - otherwise this will CPU OOM | |
pipe.unload_lora_weights() | |
pipe.enable_model_cpu_offload() | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
images = images[0, -3:, -3:, -1].flatten() | |
# This way we also test equivalence between LoRA fusion and the non-fusion behaviour. | |
expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) | |
max_diff = numpy_cosine_similarity_distance(expected, images) | |
assert max_diff < 1e-4 | |
release_memory(pipe) | |
def test_sdxl_1_0_lora_unfusion(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
pipe.fuse_lora() | |
pipe.enable_model_cpu_offload() | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 | |
).images | |
images_with_fusion = images.flatten() | |
pipe.unfuse_lora() | |
generator = torch.Generator("cpu").manual_seed(0) | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 | |
).images | |
images_without_fusion = images.flatten() | |
max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion) | |
assert max_diff < 1e-4 | |
release_memory(pipe) | |
def test_sdxl_1_0_lora_unfusion_effectivity(self): | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
pipe.enable_model_cpu_offload() | |
generator = torch.Generator().manual_seed(0) | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
original_image_slice = images[0, -3:, -3:, -1].flatten() | |
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
pipe.fuse_lora() | |
generator = torch.Generator().manual_seed(0) | |
_ = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
pipe.unfuse_lora() | |
# We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights | |
pipe.unload_lora_weights() | |
generator = torch.Generator().manual_seed(0) | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
images_without_fusion_slice = images[0, -3:, -3:, -1].flatten() | |
max_diff = numpy_cosine_similarity_distance(images_without_fusion_slice, original_image_slice) | |
assert max_diff < 1e-3 | |
release_memory(pipe) | |
def test_sdxl_1_0_lora_fusion_efficiency(self): | |
generator = torch.Generator().manual_seed(0) | |
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
) | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) | |
pipe.enable_model_cpu_offload() | |
start_time = time.time() | |
for _ in range(3): | |
pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
end_time = time.time() | |
elapsed_time_non_fusion = end_time - start_time | |
del pipe | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
) | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) | |
pipe.fuse_lora() | |
# We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being | |
# silently deleted - otherwise this will CPU OOM | |
pipe.unload_lora_weights() | |
pipe.enable_model_cpu_offload() | |
generator = torch.Generator().manual_seed(0) | |
start_time = time.time() | |
for _ in range(3): | |
pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
end_time = time.time() | |
elapsed_time_fusion = end_time - start_time | |
self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion) | |
release_memory(pipe) | |
def test_sdxl_1_0_last_ben(self): | |
generator = torch.Generator().manual_seed(0) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
pipe.enable_model_cpu_offload() | |
lora_model_id = "TheLastBen/Papercut_SDXL" | |
lora_filename = "papercut.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images | |
images = images[0, -3:, -3:, -1].flatten() | |
expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094]) | |
max_diff = numpy_cosine_similarity_distance(expected, images) | |
assert max_diff < 1e-3 | |
pipe.unload_lora_weights() | |
release_memory(pipe) | |
def test_sdxl_1_0_fuse_unfuse_all(self): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
) | |
text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict()) | |
text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict()) | |
unet_sd = copy.deepcopy(pipe.unet.state_dict()) | |
pipe.load_lora_weights( | |
"davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16 | |
) | |
fused_te_state_dict = pipe.text_encoder.state_dict() | |
fused_te_2_state_dict = pipe.text_encoder_2.state_dict() | |
unet_state_dict = pipe.unet.state_dict() | |
peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0") | |
def remap_key(key, sd): | |
# some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly | |
if (key in sd) or (not peft_ge_070): | |
return key | |
# instead of linear.weight, we now have linear.base_layer.weight, etc. | |
if key.endswith(".weight"): | |
key = key[:-7] + ".base_layer.weight" | |
elif key.endswith(".bias"): | |
key = key[:-5] + ".base_layer.bias" | |
return key | |
for key, value in text_encoder_1_sd.items(): | |
key = remap_key(key, fused_te_state_dict) | |
self.assertTrue(torch.allclose(fused_te_state_dict[key], value)) | |
for key, value in text_encoder_2_sd.items(): | |
key = remap_key(key, fused_te_2_state_dict) | |
self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value)) | |
for key, value in unet_state_dict.items(): | |
self.assertTrue(torch.allclose(unet_state_dict[key], value)) | |
pipe.fuse_lora() | |
pipe.unload_lora_weights() | |
assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict()) | |
assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict()) | |
assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict()) | |
release_memory(pipe) | |
del unet_sd, text_encoder_1_sd, text_encoder_2_sd | |
def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self): | |
generator = torch.Generator().manual_seed(0) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
pipe.enable_sequential_cpu_offload() | |
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
images = images[0, -3:, -3:, -1].flatten() | |
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) | |
max_diff = numpy_cosine_similarity_distance(expected, images) | |
assert max_diff < 1e-3 | |
pipe.unload_lora_weights() | |
release_memory(pipe) | |
def test_controlnet_canny_lora(self): | |
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet | |
) | |
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors") | |
pipe.enable_sequential_cpu_offload() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "corgi" | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
) | |
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images | |
assert images[0].shape == (768, 512, 3) | |
original_image = images[0, -3:, -3:, -1].flatten() | |
expected_image = np.array([0.4574, 0.4487, 0.4435, 0.5163, 0.4396, 0.4411, 0.518, 0.4465, 0.4333]) | |
max_diff = numpy_cosine_similarity_distance(expected_image, original_image) | |
assert max_diff < 1e-4 | |
pipe.unload_lora_weights() | |
release_memory(pipe) | |
def test_sdxl_t2i_adapter_canny_lora(self): | |
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16).to( | |
"cpu" | |
) | |
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
adapter=adapter, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
) | |
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors") | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "toy" | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png" | |
) | |
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images | |
assert images[0].shape == (768, 512, 3) | |
image_slice = images[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226]) | |
assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4 | |
def test_sequential_fuse_unfuse(self): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
) | |
# 1. round | |
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) | |
pipe.to(torch_device) | |
pipe.fuse_lora() | |
generator = torch.Generator().manual_seed(0) | |
images = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
image_slice = images[0, -3:, -3:, -1].flatten() | |
pipe.unfuse_lora() | |
# 2. round | |
pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16) | |
pipe.fuse_lora() | |
pipe.unfuse_lora() | |
# 3. round | |
pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16) | |
pipe.fuse_lora() | |
pipe.unfuse_lora() | |
# 4. back to 1st round | |
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) | |
pipe.fuse_lora() | |
generator = torch.Generator().manual_seed(0) | |
images_2 = pipe( | |
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
).images | |
image_slice_2 = images_2[0, -3:, -3:, -1].flatten() | |
max_diff = numpy_cosine_similarity_distance(image_slice, image_slice_2) | |
assert max_diff < 1e-3 | |
pipe.unload_lora_weights() | |
release_memory(pipe) | |
def test_integration_logits_multi_adapter(self): | |
path = "stabilityai/stable-diffusion-xl-base-1.0" | |
lora_id = "CiroN2022/toy-face" | |
pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16) | |
pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy") | |
pipe = pipe.to(torch_device) | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
prompt = "toy_face of a hacker with a hoodie" | |
lora_scale = 0.9 | |
images = pipe( | |
prompt=prompt, | |
num_inference_steps=30, | |
generator=torch.manual_seed(0), | |
cross_attention_kwargs={"scale": lora_scale}, | |
output_type="np", | |
).images | |
expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539]) | |
predicted_slice = images[0, -3:, -3:, -1].flatten() | |
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
assert max_diff < 1e-3 | |
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
pipe.set_adapters("pixel") | |
prompt = "pixel art, a hacker with a hoodie, simple, flat colors" | |
images = pipe( | |
prompt, | |
num_inference_steps=30, | |
guidance_scale=7.5, | |
cross_attention_kwargs={"scale": lora_scale}, | |
generator=torch.manual_seed(0), | |
output_type="np", | |
).images | |
predicted_slice = images[0, -3:, -3:, -1].flatten() | |
expected_slice_scale = np.array( | |
[0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889] | |
) | |
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
assert max_diff < 1e-3 | |
# multi-adapter inference | |
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0]) | |
images = pipe( | |
prompt, | |
num_inference_steps=30, | |
guidance_scale=7.5, | |
cross_attention_kwargs={"scale": 1.0}, | |
generator=torch.manual_seed(0), | |
output_type="np", | |
).images | |
predicted_slice = images[0, -3:, -3:, -1].flatten() | |
expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
assert max_diff < 1e-3 | |
# Lora disabled | |
pipe.disable_lora() | |
images = pipe( | |
prompt, | |
num_inference_steps=30, | |
guidance_scale=7.5, | |
cross_attention_kwargs={"scale": lora_scale}, | |
generator=torch.manual_seed(0), | |
output_type="np", | |
).images | |
predicted_slice = images[0, -3:, -3:, -1].flatten() | |
expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
assert max_diff < 1e-3 | |
def test_integration_logits_for_dora_lora(self): | |
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
pipeline.load_lora_weights("hf-internal-testing/dora-trained-on-kohya") | |
pipeline.enable_model_cpu_offload() | |
images = pipeline( | |
"photo of ohwx dog", | |
num_inference_steps=10, | |
generator=torch.manual_seed(0), | |
output_type="np", | |
).images | |
assert "It seems like you are using a DoRA checkpoint" in cap_logger.out | |
predicted_slice = images[0, -3:, -3:, -1].flatten() | |
expected_slice_scale = np.array([0.1817, 0.0697, 0.2346, 0.0900, 0.1261, 0.2279, 0.1767, 0.1991, 0.2886]) | |
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
assert max_diff < 1e-3 | |