Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import unittest | |
import torch | |
from diffusers import UNetSpatioTemporalConditionModel | |
from diffusers.utils import logging | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
skip_mps, | |
torch_device, | |
) | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
logger = logging.get_logger(__name__) | |
enable_full_determinism() | |
class UNetSpatioTemporalConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = UNetSpatioTemporalConditionModel | |
main_input_name = "sample" | |
def dummy_input(self): | |
batch_size = 2 | |
num_frames = 2 | |
num_channels = 4 | |
sizes = (32, 32) | |
noise = floats_tensor((batch_size, num_frames, num_channels) + sizes).to(torch_device) | |
time_step = torch.tensor([10]).to(torch_device) | |
encoder_hidden_states = floats_tensor((batch_size, 1, 32)).to(torch_device) | |
return { | |
"sample": noise, | |
"timestep": time_step, | |
"encoder_hidden_states": encoder_hidden_states, | |
"added_time_ids": self._get_add_time_ids(), | |
} | |
def input_shape(self): | |
return (2, 2, 4, 32, 32) | |
def output_shape(self): | |
return (4, 32, 32) | |
def fps(self): | |
return 6 | |
def motion_bucket_id(self): | |
return 127 | |
def noise_aug_strength(self): | |
return 0.02 | |
def addition_time_embed_dim(self): | |
return 32 | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"block_out_channels": (32, 64), | |
"down_block_types": ( | |
"CrossAttnDownBlockSpatioTemporal", | |
"DownBlockSpatioTemporal", | |
), | |
"up_block_types": ( | |
"UpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
), | |
"cross_attention_dim": 32, | |
"num_attention_heads": 8, | |
"out_channels": 4, | |
"in_channels": 4, | |
"layers_per_block": 2, | |
"sample_size": 32, | |
"projection_class_embeddings_input_dim": self.addition_time_embed_dim * 3, | |
"addition_time_embed_dim": self.addition_time_embed_dim, | |
} | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def _get_add_time_ids(self, do_classifier_free_guidance=True): | |
add_time_ids = [self.fps, self.motion_bucket_id, self.noise_aug_strength] | |
passed_add_embed_dim = self.addition_time_embed_dim * len(add_time_ids) | |
expected_add_embed_dim = self.addition_time_embed_dim * 3 | |
if expected_add_embed_dim != passed_add_embed_dim: | |
raise ValueError( | |
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
) | |
add_time_ids = torch.tensor([add_time_ids], device=torch_device) | |
add_time_ids = add_time_ids.repeat(1, 1) | |
if do_classifier_free_guidance: | |
add_time_ids = torch.cat([add_time_ids, add_time_ids]) | |
return add_time_ids | |
def test_forward_with_norm_groups(self): | |
pass | |
def test_model_attention_slicing(self): | |
pass | |
def test_model_with_use_linear_projection(self): | |
pass | |
def test_model_with_simple_projection(self): | |
pass | |
def test_model_with_class_embeddings_concat(self): | |
pass | |
def test_xformers_enable_works(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.enable_xformers_memory_efficient_attention() | |
assert ( | |
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
== "XFormersAttnProcessor" | |
), "xformers is not enabled" | |
def test_model_with_num_attention_heads_tuple(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["num_attention_heads"] = (8, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_model_with_cross_attention_dim_tuple(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["cross_attention_dim"] = (32, 32) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.sample | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
def test_gradient_checkpointing_is_applied(self): | |
expected_set = { | |
"TransformerSpatioTemporalModel", | |
"CrossAttnDownBlockSpatioTemporal", | |
"DownBlockSpatioTemporal", | |
"UpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
"UNetMidBlockSpatioTemporal", | |
} | |
num_attention_heads = (8, 16) | |
super().test_gradient_checkpointing_is_applied( | |
expected_set=expected_set, num_attention_heads=num_attention_heads | |
) | |
def test_pickle(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["num_attention_heads"] = (8, 16) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
sample = model(**inputs_dict).sample | |
sample_copy = copy.copy(sample) | |
assert (sample - sample_copy).abs().max() < 1e-4 | |