Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import unittest | |
import numpy as np | |
import torch | |
# torch_device, # {{ edit_1 }} Removed unused import | |
from transformers import ( | |
AutoTokenizer, | |
CLIPTextConfig, | |
CLIPTextModel, | |
CLIPTokenizer, | |
T5EncoderModel, | |
) | |
from diffusers import ( | |
AutoencoderKL, | |
FlowMatchEulerDiscreteScheduler, | |
FluxControlNetInpaintPipeline, | |
FluxControlNetModel, | |
FluxTransformer2DModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class FluxControlNetInpaintPipelineTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = FluxControlNetInpaintPipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"height", | |
"width", | |
"guidance_scale", | |
"prompt_embeds", | |
"pooled_prompt_embeds", | |
"image", | |
"mask_image", | |
"control_image", | |
"strength", | |
"num_inference_steps", | |
"controlnet_conditioning_scale", | |
] | |
) | |
batch_params = frozenset(["prompt", "image", "mask_image", "control_image"]) | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = FluxTransformer2DModel( | |
patch_size=1, | |
in_channels=8, | |
num_layers=1, | |
num_single_layers=1, | |
attention_head_dim=16, | |
num_attention_heads=2, | |
joint_attention_dim=32, | |
pooled_projection_dim=32, | |
axes_dims_rope=[4, 4, 8], | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModel(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4,), | |
layers_per_block=1, | |
latent_channels=2, | |
norm_num_groups=1, | |
use_quant_conv=False, | |
use_post_quant_conv=False, | |
shift_factor=0.0609, | |
scaling_factor=1.5035, | |
) | |
torch.manual_seed(0) | |
controlnet = FluxControlNetModel( | |
patch_size=1, | |
in_channels=8, | |
num_layers=1, | |
num_single_layers=1, | |
attention_head_dim=16, | |
num_attention_heads=2, | |
joint_attention_dim=32, | |
pooled_projection_dim=32, | |
axes_dims_rope=[4, 4, 8], | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
"transformer": transformer, | |
"vae": vae, | |
"controlnet": controlnet, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
mask_image = torch.ones((1, 1, 32, 32)).to(device) | |
control_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": image, | |
"mask_image": mask_image, | |
"control_image": control_image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"height": 32, | |
"width": 32, | |
"max_sequence_length": 48, | |
"strength": 0.8, | |
"output_type": "np", | |
} | |
return inputs | |
def test_flux_controlnet_inpaint_with_num_images_per_prompt(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["num_images_per_prompt"] = 2 | |
output = pipe(**inputs) | |
images = output.images | |
assert images.shape == (2, 32, 32, 3) | |
def test_flux_controlnet_inpaint_with_controlnet_conditioning_scale(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output_default = pipe(**inputs) | |
image_default = output_default.images | |
inputs["controlnet_conditioning_scale"] = 0.5 | |
output_scaled = pipe(**inputs) | |
image_scaled = output_scaled.images | |
# Ensure that changing the controlnet_conditioning_scale produces a different output | |
assert not np.allclose(image_default, image_scaled, atol=0.01) | |
def test_attention_slicing_forward_pass(self): | |
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |