Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, T5EncoderModel | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
PixArtSigmaPAGPipeline, | |
PixArtSigmaPipeline, | |
PixArtTransformer2DModel, | |
) | |
from diffusers.utils import logging | |
from diffusers.utils.testing_utils import ( | |
CaptureLogger, | |
enable_full_determinism, | |
torch_device, | |
) | |
from ..pipeline_params import ( | |
TEXT_TO_IMAGE_BATCH_PARAMS, | |
TEXT_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_TO_IMAGE_PARAMS, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference, to_np | |
enable_full_determinism() | |
class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = PixArtSigmaPAGPipeline | |
params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) | |
params = set(params) | |
params.remove("cross_attention_kwargs") | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = PipelineTesterMixin.required_optional_params | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = PixArtTransformer2DModel( | |
sample_size=8, | |
num_layers=2, | |
patch_size=2, | |
attention_head_dim=8, | |
num_attention_heads=3, | |
caption_channels=32, | |
in_channels=4, | |
cross_attention_dim=24, | |
out_channels=8, | |
attention_bias=True, | |
activation_fn="gelu-approximate", | |
num_embeds_ada_norm=1000, | |
norm_type="ada_norm_single", | |
norm_elementwise_affine=False, | |
norm_eps=1e-6, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL() | |
scheduler = DDIMScheduler() | |
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
components = { | |
"transformer": transformer.eval(), | |
"vae": vae.eval(), | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 1.0, | |
"pag_scale": 3.0, | |
"use_resolution_binning": False, | |
"output_type": "np", | |
} | |
return inputs | |
def test_pag_disable_enable(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
# base pipeline (expect same output when pag is disabled) | |
pipe = PixArtSigmaPipeline(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["pag_scale"] | |
assert ( | |
"pag_scale" not in inspect.signature(pipe.__call__).parameters | |
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe.__class__.__name__}." | |
out = pipe(**inputs).images[0, -3:, -3:, -1] | |
# pag disabled with pag_scale=0.0 | |
components["pag_applied_layers"] = ["blocks.1"] | |
pipe_pag = self.pipeline_class(**components) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["pag_scale"] = 0.0 | |
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
# pag enabled | |
pipe_pag = self.pipeline_class(**components) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 | |
def test_pag_applied_layers(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
# base pipeline | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
# "attn1" should apply to all self-attention layers. | |
all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn1" in k] | |
pag_layers = ["blocks.0", "blocks.1"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) | |
def test_pag_inference(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe_pag = self.pipeline_class(**components) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe_pag(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == ( | |
1, | |
8, | |
8, | |
3, | |
), f"the shape of the output image should be (1, 8, 8, 3) but got {image.shape}" | |
expected_slice = np.array([0.6499, 0.3250, 0.3572, 0.6780, 0.4453, 0.4582, 0.2770, 0.5168, 0.4594]) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
# Copied from tests.pipelines.pixart_sigma.test_pixart.PixArtSigmaPipelineFastTests.test_save_load_optional_components | |
def test_save_load_optional_components(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs["prompt"] | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = pipe.encode_prompt(prompt) | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"prompt_attention_mask": prompt_attention_mask, | |
"negative_prompt": None, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"negative_prompt_attention_mask": negative_prompt_attention_mask, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
"use_resolution_binning": False, | |
} | |
# set all optional components to None | |
for optional_component in pipe._optional_components: | |
setattr(pipe, optional_component, None) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, pag_applied_layers=["blocks.1"]) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
for optional_component in pipe._optional_components: | |
self.assertTrue( | |
getattr(pipe_loaded, optional_component) is None, | |
f"`{optional_component}` did not stay set to None after loading.", | |
) | |
inputs = self.get_dummy_inputs(torch_device) | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"prompt_attention_mask": prompt_attention_mask, | |
"negative_prompt": None, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"negative_prompt_attention_mask": negative_prompt_attention_mask, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
"use_resolution_binning": False, | |
} | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-4) | |
# Because the PAG PixArt Sigma has `pag_applied_layers`. | |
# Also, we shouldn't be doing `set_default_attn_processor()` after loading | |
# the pipeline with `pag_applied_layers`. | |
def test_save_load_local(self, expected_max_difference=1e-4): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs)[0] | |
logger = logging.get_logger("diffusers.pipelines.pipeline_utils") | |
logger.setLevel(diffusers.logging.INFO) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir, safe_serialization=False) | |
with CaptureLogger(logger) as cap_logger: | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, pag_applied_layers=["blocks.1"]) | |
for name in pipe_loaded.components.keys(): | |
if name not in pipe_loaded._optional_components: | |
assert name in str(cap_logger) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, expected_max_difference) | |
# We shouldn't be setting `set_default_attn_processor` here. | |
def test_attention_slicing_forward_pass( | |
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
output_without_slicing = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=1) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing1 = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=2) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing2 = pipe(**inputs)[0] | |
if test_max_difference: | |
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
self.assertLess( | |
max(max_diff1, max_diff2), | |
expected_max_diff, | |
"Attention slicing should not affect the inference results", | |
) | |
if test_mean_pixel_difference: | |
assert_mean_pixel_difference(to_np(output_with_slicing1[0]), to_np(output_without_slicing[0])) | |
assert_mean_pixel_difference(to_np(output_with_slicing2[0]), to_np(output_without_slicing[0])) | |
# Because we have `pag_applied_layers` we cannot direcly apply | |
# `set_default_attn_processor` | |
def test_dict_tuple_outputs_equivalent(self, expected_slice=None, expected_max_difference=1e-4): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
if expected_slice is None: | |
output = pipe(**self.get_dummy_inputs(generator_device))[0] | |
else: | |
output = expected_slice | |
output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0] | |
if expected_slice is None: | |
max_diff = np.abs(to_np(output) - to_np(output_tuple)).max() | |
else: | |
if output_tuple.ndim != 5: | |
max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1].flatten()).max() | |
else: | |
max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1, -1].flatten()).max() | |
self.assertLess(max_diff, expected_max_difference) | |
# Same reason as above | |
def test_inference_batch_single_identical( | |
self, | |
batch_size=2, | |
expected_max_diff=1e-4, | |
additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
# Reset generator in case it is has been used in self.get_dummy_inputs | |
inputs["generator"] = self.get_generator(0) | |
logger = logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
batched_inputs = {} | |
batched_inputs.update(inputs) | |
for name in self.batch_params: | |
if name not in inputs: | |
continue | |
value = inputs[name] | |
if name == "prompt": | |
len_prompt = len(value) | |
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
batched_inputs[name][-1] = 100 * "very long" | |
else: | |
batched_inputs[name] = batch_size * [value] | |
if "generator" in inputs: | |
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] | |
if "batch_size" in inputs: | |
batched_inputs["batch_size"] = batch_size | |
for arg in additional_params_copy_to_batched_inputs: | |
batched_inputs[arg] = inputs[arg] | |
output = pipe(**inputs) | |
output_batch = pipe(**batched_inputs) | |
assert output_batch[0].shape[0] == batch_size | |
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() | |
assert max_diff < expected_max_diff | |
# Because we're passing `pag_applied_layers` (type of List) in the components as well. | |
def test_components_function(self): | |
init_components = self.get_dummy_components() | |
init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float, list))} | |
pipe = self.pipeline_class(**init_components) | |
self.assertTrue(hasattr(pipe, "components")) | |
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) | |