Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import inspect | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
AutoencoderTiny, | |
AutoPipelineForImage2Image, | |
EulerDiscreteScheduler, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionPAGImg2ImgPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import ( | |
IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, | |
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, | |
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
) | |
from ..test_pipelines_common import ( | |
IPAdapterTesterMixin, | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineLatentTesterMixin, | |
PipelineTesterMixin, | |
) | |
enable_full_determinism() | |
class StableDiffusionPAGImg2ImgPipelineFastTests( | |
IPAdapterTesterMixin, | |
PipelineLatentTesterMixin, | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineTesterMixin, | |
unittest.TestCase, | |
): | |
pipeline_class = StableDiffusionPAGImg2ImgPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"} | |
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
time_cond_proj_dim=time_cond_proj_dim, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_tiny_autoencoder(self): | |
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) | |
def get_dummy_inputs(self, device, seed=0): | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image / 2 + 0.5 | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"pag_scale": 0.9, | |
"output_type": "np", | |
} | |
return inputs | |
def test_pag_disable_enable(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
# base pipeline (expect same output when pag is disabled) | |
pipe_sd = StableDiffusionImg2ImgPipeline(**components) | |
pipe_sd = pipe_sd.to(device) | |
pipe_sd.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["pag_scale"] | |
assert ( | |
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters | |
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." | |
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] | |
# pag disabled with pag_scale=0.0 | |
pipe_pag = self.pipeline_class(**components) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["pag_scale"] = 0.0 | |
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
# pag enabled | |
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 | |
def test_pag_inference(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe_pag(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == ( | |
1, | |
32, | |
32, | |
3, | |
), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}" | |
expected_slice = np.array( | |
[0.44203848, 0.49598145, 0.42248967, 0.6707724, 0.5683791, 0.43603387, 0.58316565, 0.60077155, 0.5174199] | |
) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
class StableDiffusionPAGImg2ImgPipelineIntegrationTests(unittest.TestCase): | |
pipeline_class = StableDiffusionPAGImg2ImgPipeline | |
repo_id = "Jiali/stable-diffusion-1.5" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
init_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_img2img/sketch-mountains-input.png" | |
) | |
inputs = { | |
"prompt": "a fantasy landscape, concept art, high resolution", | |
"image": init_image, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"strength": 0.75, | |
"guidance_scale": 7.5, | |
"pag_scale": 3.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_pag_cfg(self): | |
pipeline = AutoPipelineForImage2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) | |
pipeline.enable_model_cpu_offload() | |
pipeline.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = pipeline(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
print(image_slice.flatten()) | |
expected_slice = np.array( | |
[0.58251953, 0.5722656, 0.5683594, 0.55029297, 0.52001953, 0.52001953, 0.49951172, 0.45410156, 0.50146484] | |
) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
), f"output is different from expected, {image_slice.flatten()}" | |
def test_pag_uncond(self): | |
pipeline = AutoPipelineForImage2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) | |
pipeline.enable_model_cpu_offload() | |
pipeline.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device, guidance_scale=0.0) | |
image = pipeline(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array( | |
[0.5986328, 0.52441406, 0.3972168, 0.4741211, 0.34985352, 0.22705078, 0.4128418, 0.2866211, 0.31713867] | |
) | |
print(image_slice.flatten()) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
), f"output is different from expected, {image_slice.flatten()}" | |