# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import os import sys import tempfile import unittest import numpy as np import safetensors.torch import torch from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel from diffusers import FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel from diffusers.utils.testing_utils import ( floats_tensor, is_peft_available, nightly, numpy_cosine_similarity_distance, require_peft_backend, require_torch_gpu, slow, torch_device, ) if is_peft_available(): from peft.utils import get_peft_model_state_dict sys.path.append(".") from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402 @require_peft_backend class FluxLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = FluxPipeline scheduler_cls = FlowMatchEulerDiscreteScheduler() scheduler_kwargs = {} scheduler_classes = [FlowMatchEulerDiscreteScheduler] transformer_kwargs = { "patch_size": 1, "in_channels": 4, "num_layers": 1, "num_single_layers": 1, "attention_head_dim": 16, "num_attention_heads": 2, "joint_attention_dim": 32, "pooled_projection_dim": 32, "axes_dims_rope": [4, 4, 8], } transformer_cls = FluxTransformer2DModel vae_kwargs = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "block_out_channels": (4,), "layers_per_block": 1, "latent_channels": 1, "norm_num_groups": 1, "use_quant_conv": False, "use_post_quant_conv": False, "shift_factor": 0.0609, "scaling_factor": 1.5035, } has_two_text_encoders = True tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2" text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" @property def output_shape(self): return (1, 8, 8, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 10 num_channels = 4 sizes = (32, 32) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "A painting of a squirrel eating a burger", "num_inference_steps": 4, "guidance_scale": 0.0, "height": 8, "width": 8, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs def test_with_alpha_in_state_dict(self): components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == self.output_shape) pipe.transformer.add_adapter(denoiser_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images with tempfile.TemporaryDirectory() as tmpdirname: denoiser_state_dict = get_peft_model_state_dict(pipe.transformer) self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) pipe.unload_lora_weights() pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) # modify the state dict to have alpha values following # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA/blob/main/jon_snow.safetensors state_dict_with_alpha = safetensors.torch.load_file( os.path.join(tmpdirname, "pytorch_lora_weights.safetensors") ) alpha_dict = {} for k, v in state_dict_with_alpha.items(): # only do for `transformer` and for the k projections -- should be enough to test. if "transformer" in k and "to_k" in k and "lora_A" in k: alpha_dict[f"{k}.alpha"] = float(torch.randint(10, 100, size=())) state_dict_with_alpha.update(alpha_dict) images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") pipe.unload_lora_weights() pipe.load_lora_weights(state_dict_with_alpha) images_lora_with_alpha = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), "Loading from saved checkpoints should give same results.", ) self.assertFalse(np.allclose(images_lora_with_alpha, images_lora, atol=1e-3, rtol=1e-3)) @unittest.skip("Not supported in Flux.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Not supported in Flux.") def test_modify_padding_mode(self): pass @slow @nightly @require_torch_gpu @require_peft_backend @unittest.skip("We cannot run inference on this model with the current CI hardware") # TODO (DN6, sayakpaul): move these tests to a beefier GPU class FluxLoRAIntegrationTests(unittest.TestCase): """internal note: The integration slices were obtained on audace. torch: 2.6.0.dev20241006+cu124 with CUDA 12.5. Need the same setup for the assertions to pass. """ num_inference_steps = 10 seed = 0 def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() self.pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_flux_the_last_ben(self): self.pipeline.load_lora_weights("TheLastBen/Jon_Snow_Flux_LoRA", weight_name="jon_snow.safetensors") self.pipeline.fuse_lora() self.pipeline.unload_lora_weights() self.pipeline.enable_model_cpu_offload() prompt = "jon snow eating pizza with ketchup" out = self.pipeline( prompt, num_inference_steps=self.num_inference_steps, guidance_scale=4.0, output_type="np", generator=torch.manual_seed(self.seed), ).images out_slice = out[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.1855, 0.1855, 0.1836, 0.1855, 0.1836, 0.1875, 0.1777, 0.1758, 0.2246]) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) assert max_diff < 1e-3 def test_flux_kohya(self): self.pipeline.load_lora_weights("Norod78/brain-slug-flux") self.pipeline.fuse_lora() self.pipeline.unload_lora_weights() self.pipeline.enable_model_cpu_offload() prompt = "The cat with a brain slug earring" out = self.pipeline( prompt, num_inference_steps=self.num_inference_steps, guidance_scale=4.5, output_type="np", generator=torch.manual_seed(self.seed), ).images out_slice = out[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.6367, 0.6367, 0.6328, 0.6367, 0.6328, 0.6289, 0.6367, 0.6328, 0.6484]) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) assert max_diff < 1e-3 def test_flux_kohya_with_text_encoder(self): self.pipeline.load_lora_weights("cocktailpeanut/optimus", weight_name="optimus.safetensors") self.pipeline.fuse_lora() self.pipeline.unload_lora_weights() self.pipeline.enable_model_cpu_offload() prompt = "optimus is cleaning the house with broomstick" out = self.pipeline( prompt, num_inference_steps=self.num_inference_steps, guidance_scale=4.5, output_type="np", generator=torch.manual_seed(self.seed), ).images out_slice = out[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.4023, 0.4023, 0.4023, 0.3965, 0.3984, 0.3965, 0.3926, 0.3906, 0.4219]) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) assert max_diff < 1e-3 def test_flux_xlabs(self): self.pipeline.load_lora_weights("XLabs-AI/flux-lora-collection", weight_name="disney_lora.safetensors") self.pipeline.fuse_lora() self.pipeline.unload_lora_weights() self.pipeline.enable_model_cpu_offload() prompt = "A blue jay standing on a large basket of rainbow macarons, disney style" out = self.pipeline( prompt, num_inference_steps=self.num_inference_steps, guidance_scale=3.5, output_type="np", generator=torch.manual_seed(self.seed), ).images out_slice = out[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.3965, 0.4180, 0.4434, 0.4082, 0.4375, 0.4590, 0.4141, 0.4375, 0.4980]) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) assert max_diff < 1e-3